

PUBLIC

Code Assessment

of the Hedgehog Protocol

Smart Contracts

Jun 02, 2025

Produced for

by

Contents

1 Executive Summary 3

2 Assessment Overview 5

3 Limitations and use of report 12

4 Terminology 13

5 Open Findings 14

6 Resolved Findings 23

7 Informational 64

8 Notes 68

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 2

https://chainsecurity.com

1 Executive Summary
Dear Hedgehog Team,

Thank you for trusting us to help Hedgehog with this security audit. Our executive summary provides an
overview of subjects covered in the latest reviewed contracts of Hedgehog Protocol according to Scope
to support you in forming an opinion on their security risks.

Hedgehog implements a hedging instrument for the change of the base fee on Ethereum mainnet.
Hedgehog has forked Liquity v1 and adapted the smart contracts to implement the gas derivative used
for hedging. This review was limited to the smart contract modifications applied by Hedgehog, under the
assumption of Liquity's codebase being safe. However, it is important to acknowledge that any potential
bug in Liquity could impact Hedgehog too.

The most critical subjects covered in our review are functional correctness and access control. Initially,
security regarding functional correctness was improvable, while security regarding access control was
satisfactory. A set of severe issues were introduced in the initial versions of the codebase, mainly from
two changes:

1. The debt token BaseFeeLMA was using 6 decimals

2. The Base fee oracle returned a price with 1 decimal and the token pair BaseFeeLMA:ETH

These changes were not reflected consistently in the codebase, hence breaking multiple pre-existing
functions. These issues have been resolved in the final version.

Version 4In of the codebase a new functionality to enforce a system-wide withdrawal limit was added.
The implementation of this functionality introduced a set of new bugs, the most severe being Liquidations
are blocked from Withdrawal Limit. These findings have been resolved in the final version.

The general subjects covered are trustworthiness, documentation, and testing. Security regarding
trustworthiness have been improved throughout the review, but privileged roles in non-core contracts can
still block user operations, see Trust Model and Roles. Documentation and specification are improvable
and can be extended to describe the changes more thoroughly and systematically. The testing suite has
been enhanced in the later iterations, but testing remains improvable. The tested contracts do not always
match the deployed contracts (i.e. HogToken on Base) and not all code paths are covered by tests.
Hence, we recommend further testing.

The final code version has some lower severity findings were (partial) risks have been accepted (see
Open Findings).

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings
Below we provide a brief numerical overview of the findings and how they have been addressed.

Critical -Severity Findings 5

• Code Corrected 5

High -Severity Findings 11

• Code Corrected 10

• Specification Changed 1

Medium -Severity Findings 27

• Code Corrected 20

• Specification Changed 3

• Code Partially Corrected 1

• Risk Accepted 2

• Acknowledged 1

Low -Severity Findings 26

• Code Corrected 17

• Specification Changed 2

• Code Partially Corrected 2

• Risk Accepted 3

• Acknowledged 2

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview
In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope
The assessment was performed on the source code files inside the Hedgehog Protocol repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V Date Commit Hash Note

1 11 Mar 2024 5d507ca2b2c0dede6ac6f8efe63169cbe78a3a4c Initial Version

2 18 May 2024 1773f6fb8e5490a67b6eca4342df0452ac7e4a2b Version 2

3 03 Jul 2024 242c53a23241679a39d434a5a8a5eef9d7381ad8 Version 3

4 26 Aug 2024 96670a9d1ec8cdbf71b9e9439a52dc8bd39b9af5 Version 4

5 24 Feb 2025 f07d83daea7349db62493307b69e2f274c13fb63 Version 5

6 29 Apr 2025 47daa8e63885edbcc08f14e17bd3a716e782d518 Version 6

7 21 May 2025 9e9b8156cc8ada17d1bdeed0bce148ea43326295 Final Version

For the solidity smart contracts, the compiler version 0.8.19 was chosen.

The following files in the folder contracts are in scope:

dependencies
 BaseMath.sol
 CheckContract.sol
 HedgehogBase.sol
 IERC2612.sol
 LiquityMath.sol
 LiquitySafeMath128.sol
HOG
 CommunityIssuance.sol
 HOGToken.sol
ActivePool.sol
BaseFeeLMAToken.sol
BaseFeeOracle.sol
BorrowerOperations.sol
CollSurplusPool.sol
DefaultPool.sol
FeesRouter.sol
GasPool.sol
HintHelpers.sol
PriceFeed.sol
SortedTroves.sol
StabilityPool.sol
TroveManager.sol

Version 3 Version 4In and the following contracts were included in scope:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

BaseFeeOracleArb.sol (replaced BaseFeeOracle.sol in version 3)
PriceFeedArb.sol (replaced PriceFeed.sol in version 3)
BorrowerOperationsArb.sol (replaced BorrowerOperations.sol in version 3)
TroveManagerArb.sol (replaced TroveManager.sol in version 3)

The following contracts were removed from the scope:

BaseFeeOracle.sol
PriceFeed.sol
TroveManager.sol
BorrowerOperations.sol

Version 5In , the previous change was reverted, and the following contracts were included in scope:

BaseFeeOracle.sol (replaced BaseFeeOracleArb.sol in version 5)
PriceFeed.sol (replaced PriceFeedArb.sol in version 5)
BorrowerOperations.sol (replaced BorrowerOperationsArb.sol in version 5)
TroveManager.sol (replaced TroveManagerArb.sol in version 5)

The following contracts were removed from the scope:

deprecated
 BaseFeeOracleArb.sol
 PriceFeedArb.sol
 BorrowerOperationsArb.sol
 TroveManagerArb.sol

Version 6In , the following files were removed from the scope:

LiquitySafeMath128.sol

2.1.1 Excluded from scope
Any contracts that are not explicitly listed above are out of the scope of this review. The contracts in
folders helpers and LPRewards are explicitly excluded from scope. Third-party libraries are also out of
the scope of this review.

The implementations of the collateral token WStETH in Ethereum mainnet and Base (Ethereum L2), and
the respective bridge are not in scope of this review. Furthermore, the HOGToken contract is planned to
be deployed on Ethereum mainnet, while the bridged token on Layer 2 chain is not in scope of this
review. In this report, we assume the protocol is deployed on the Base chain, hence the correctness of
the codebase if deployed on other chains is not in scope of this review.

We assume that the collateral token WStETH is an ERC20 token with 18 decimals that has a conversion
rate to native ETH of less than 100:1.

Version 1 Version 4Earlier versions of the codebase (-) were developed for deployment on Arbitrum.
However, Arbitrum-specific contracts have since been deprecated. The following contracts from earlier
versions are no longer in scope and should not be deployed: BaseFeeOracleArb.sol ,
PriceFeedArb.sol, BorrowerOperationsArb.sol and TroveManagerArb.sol.

In this report, we assume the Liquity v1 is safe, and the review is focused on the changes applied by
Hedgehog to the smart contracts from Liquity. Therefore, any bug present in Liquity might still be present
in Hedgehog.

Finally, the soundness of the financial model was not evaluated.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2 System Overview
Version 1This system overview describes the initially received version () of the contracts as defined in the

Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Hedgehog offers a hedging instrument for the price change of the base fee in Ethereum mainnet.
Hedgehog has forked Liquity v1 and adapted the smart contracts to implement the hedging instrument. In
this report, we focus on the smart contract changes applied by Hedgehog. A more complete
documentation of Liquity's smart contracts and functionalities can be found here.

EIP-1559 introduced a new pricing model for the gas costs of transactions in Ethereum mainnet.
EIP-1559 splits the gas costs into two parts: 1) base fee, which represents the minimum amount of Ether
a user must pay to have their transactions included in a block; 2) priority fee, or the tip paid to validators
for including a transaction in a block. While the priority fee is chosen freely by users, the base fee is
dynamically adjusted based on changes in network demand to maintain a target level of block space
utilization. When the network is congested, the base fee increases, hence making transactions more
expensive. Conversely, when the network is less congested, the base fee decreases, providing users
with lower transaction fees. The base fee changes with at most 12.5% (higher/lower) depending on the
utilization of the previous block.

Hedgehog implements an ERC20-compliant token named BaseFeeLMAToken that is pegged to the
base fee in the Ethereum mainnet, hence enabling users to hedge gas costs of future transactions.
Obviously, the main difference from Liquity is that the debt token BaseFeeLMAToken does not maintain
a fixed value in terms of USD, instead its value follows the base fee in mainnet. We detail in the next
section the differences from Liquity.

2.2.1 Hedgehog customizations
Hedgehog plans to deploy the smart contracts on a Layer-2 chain, Arbitrum, hence the codebase is
adapted accordingly.

Collateral asset

Hedgehog uses the WStETH (Wrapped Staked ETH) token as a collateral asset instead of Ether used by
Liquity. Therefore, functionalities that transfer the collateral asset have been revised to integrate with a
WStETH, which is an ERC20 token.

Oracles

The Chainlink and Tellor oracles have been replaced with two instances of BaseFeeOracle which are
deployed and maintained by Hedgehog. These oracles return the base fee price in Ethereum mainnet. A
trusted off-chain service monitors Ethereum blocks and computes the price of BaseFeeLMAToken as a
logarithmic moving average of the last 50 blocks in mainnet. The smallest is assigned to the newest
value and the largest weight to the oldest value. The oracle returns the price of BaseFeeLMAToken
quoted in wstETH (BaseFeeLMA/wstETH).

New prices should be published roughly every 14 minutes before an oracle is considered frozen by the
contract PriceFeed. If the main oracle is frozen, PriceFeed relies on the prices returned by the
backup oracle, which is another instance of BaseFeeOracle in the case of Hedgehog.

Collateralization parameters

Hedgehog has changed the minimum collateralization ratio from 110% to 150%. Similarly, the critical
collateralization ratio was updated from 150% to 200%. These higher parameters affect the capital
efficiency, liquidations, and the pegging of the BaseFeeLMAToken to the actual base fee in mainnet. In
this report, we do not analyze in depth the financial impact of these changes.

The increase of minimum collateralization ratio (MCR) to 150% and critical collateralization ratio (CCR)
reduce the capital efficiency as users can borrow less debt tokens for the same amount of collateral.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 7

https://github.com/liquity/dev/blob/%40liquity/providers-v1.0.1/README.md
https://eips.ethereum.org/EIPS/eip-1559
https://arbiscan.io/token/0x5979d7b546e38e414f7e9822514be443a4800529
https://chainsecurity.com

During normal mode, troves (borrowers' positions) are liquidated if their collateralization ratio falls below
MCR (150%), while in recovery mode troves with collateralization ratio below CCR (200%) are also
liquidated. Therefore, troves in Hedgehog are expected to have a higher collateralization ratio than in
Liquity.

The minimum collateralization ratio plays a key role in maintaining the pegging of the debt token
(BaseFeeLMAToken) to its actual value (base fee in mainnet). A higher MCR weakens the peg of
BaseFeeLMAToken as the token can trade in secondary markets up to 150% of its real value. If the
BaseFeeLMAToken price in a secondary market exceeds this limit (150%), then there is an arbitrage
opportunity as one can make a profit by minting new BaseFeeLMAToken (borrowing) and selling them
immediately.

Borrowing and redeeming fees

Hedgehog charges fees on borrow and redeem operations. The dynamic fees serve as a throttling
mechanism by charging higher fees for operations that change significantly the total supply of
BaseFeeLMAToken or the collateral held by the protocol. However, the way the dynamic fees are
computed is different from Liquity. Importantly, the borrow rate does not depend on the redemptions
anymore.

The borrowing rate is calculated with the following formula:

BorrowRate = BorrowFloor + BorrowBaseRate * BorrowDecayFactorMinutes + IssuedBFee
TotalBFeeSupply

The borrowing decay factor is chosen such that after roughly 78 minutes the base rate for borrowing
decays by 50%. Note that the borrowing rate does not depend on redemptions, hence the borrowing is
not throttled after large redemptions. There is no cap on the borrowing rates, and they can go up to
100%. Hedgehog charges a borrow fee also during recovery mode although more restrictions apply in
that setting: The trove's CR should be above CCR to improve the overall health of the system, hence
making borrowing less attractive in recovery mode.

The redemption rate is calculated as follows:

RedeemRate = RedeemFloor + RedeemBaseRate * RedeemDecayFactorMinutes + RedeemCollateral
TotalCollateral

The redeem decay factor is chosen such that the redeem base rate decays by 50% after 12 hours. The
fee rate is doubled from Liquity, and they are not capped (Liquity caps the borrowing fee rate at 5%).

Fees router

The contract FeesRouter is new in Hedgehog and it manages the fee distribution from borrow and
redeem operations. The Staking contract that received fees in Liquity has been removed. FeesRouter
has a privileged role SETTER that can set configurations for the distribution of fees charged in debt or
collateral tokens.

Each configuration includes up to 3 arbitrary addresses that should receive fees in a predefined ratio.
Configurations for fees in debt tokens and collateral tokens are different.

HOG token

HOGToken is an ERC20-compliant token that implements the permit extension as specified in EIP-2612.
The total supply of HOG token is hard coded at 100 million and the whole supply is minted in the
constructor to an arbitrary multisigAddress provided by the deployer. Differently from Liquity, no HOG
tokens are allocated to special accounts such as bounty entitlements or LP Rewards entitlements. The
account multisig is considered trusted and it should distribute HOG tokens to other contracts/accounts
in the system as expected, e.g., to community issuance.

HOGToken is the only contract deployed on Ethereum mainnet, therefore the trusted multisigAddress
should bridge tokens to the layer-2 chain where the protocol is deployed.

The initial HOG holder multisigAddress should send the expected number of tokens to the contract
CommunityIssuance. The latter releases HOG tokens to users of the system based on a predefined

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 8

https://eips.ethereum.org/EIPS/eip-2612
https://chainsecurity.com

curve. Accounts with the privileged role DISTRIBUTION_SETTER can update the parameters
HOGSupplyCap and ISSUANCE_FACTOR that alter the issuance curve.

Removed functionalities

The functionality to reward frontend providers has been removed from Hedgehog. The protocol token
HOG is minted exclusively to the multisig account which is the sole holder after the contract is
deployed. The staking functionality of HOG tokens has been removed. The protocol fees are handled by
the contract FeesRouter as described above.

2.2.2 Trust Model and Roles
Several contracts in Hedgehog Protocol have privileged accounts that need to be trusted to behave
correctly for the protocol to function as expected. We detail these accounts below.

In general, we assume the deployers of contracts are trusted to initially configure contracts with the
correct parameters. Otherwise, users should not interact with contracts that have been misconfigured.

CommunityIssuance: Any account with the role DISTRIBUTION_SETTER or
DISTRIBUTION_SETTER_ADMIN are considered fully trusted, and they should be carefully protected. If
an account holding one of these roles is compromised, they can change freely the issuance curve of
HOG tokens to block core functionalities of the system by causing underflows.

HOGToken: The _multisigAddress is fully trusted to bridge HOG tokens from Ethereum mainnet to
Arbitrum and distribute them to other contracts of the system as expected, e.g., to CommunityIssuance
contract.

BaseFeeOracle: Any account with the role ULTIMATE_ADMIN or SETTER is considered fully trusted, and
they should be carefully protected. If an account holding one of these roles is compromised, they can
publish false prices and liquidate healthy troves or mint arbitrary number of debt tokens by opening
undercollaterized troves.

FeesRouter: Any account with the role ULTIMATE_ADMIN or SETTER is considered fully trusted, and
they should be carefully protected. If an account holding one of these roles is compromised, they can
redirect fees to arbitrary addresses or remove configurations to block core functionalities of the system.

Finally, the collateral token WStETH in Arbitrum is considered fully trusted, including its proxy admin and
the bridging system.

2.2.3 Changes in Version 2:

• The BaseFeeOracle has been revised to return the price for the pair BaseFeeLMA:wStETH and
uses 18 decimals.

• The ERC20 token BaseFeeLMA uses 18 decimals.

• The PriceFeed target digits are 18 decimals.

• Troves can be modified only once in a block.

• The parameter _BaseFeeLMAAmount in openTrove() excludes the gas compensation.

2.2.4 Changes in Version 3:

• Fixes of reported issues Locking of Troves Is Longer Than Specified and Misleading Variable Name
in BaseFeeOracle are implemented in new contracts, namely BaseFeeOracleArb.sol,
PriceFeedArb.sol, BorrowerOperationsArb.sol and TroveManagerArb.sol.

•

Version 3

The contracts BaseFeeOracle.sol, PriceFeed.sol, BorrowerOperations.sol and
TroveManager.sol do not include the latest fixes, therefore they should not be deployed. These
contracts were removed from the scope of the audit starting at .

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

• The issuance can no longer underflow when it is being reduced, so the DISTRIBUTION_SETTER
can no longer block the system by reducing the issuance.

2.2.5 Changes in Version 4:
The Hedgehog introduced withdrawal limits to address issues Attacker With Sufficient Funds Can Lower
Redemption Fees and Reducing Fees by Splitting Transactions:

On each deposit:

• The new withdrawal limit is set to the old limit plus 50% of the deposit amount.

• If the new limit exceeds the previous collateral value, it is set to 50% of the total collateral and
resetting any withdrawals.

On each withdrawal:

• The withdrawn collateral is deducted from the withdrawal limit.

• Withdrawals from adjusting a trove, closing a trove, and redemptions can only use up to 80% of
the current withdrawal limit.

• Withdrawals resulting from liquidations face no restriction but still update the withdrawal limit.

• Each withdrawal updates the lastWithdrawalTimestamp.

Version 4

The withdrawal limit recovers linearly over time: After a wait time of EXPAND_DURATION (720 minutes
or 12 hours in), the limit is fully recovered.

2.2.6 Changes in Version 5:
The contracts have been updated to enable deployment on the Layer-2 chain Base instead of Arbitrum.

Version 4The withdrawal limits introduced in have been modified.

On each deposit:

• The new withdrawal limit is set to the old limit plus 50% of the deposit amount.

On each withdrawal:

• If the collateral in the active pool falls below 10 WStETH after the withdrawal, the withdrawal
limit is set to the remaining collateral amount.

• The withdrawn collateral is deducted from the withdrawal limit.

• Withdrawals from adjusting a trove, closing a trove, and redemptions can only use up to 80% of
the current withdrawal limit.

• Withdrawals resulting from liquidations face no restriction but still lower the withdrawal limit.

• Each withdrawal updates the lastWithdrawalTimestamp and deducts the withdrawn amount

Withdrawal limits:

The withdrawal limit at any time t is determined by adding the previous limit to the recovered limit:

WithdrawalLimitt = WithdrawalLimitt − 1 + recoveredLimitt

The withdrawal limit recovers linearly over time after the last withdrawal, gradually increasing until it
reaches the total collateral-based limit over a period of EXPAND_DURATION (set to 720 minutes / 12
hours in Version 5).

After 4 hours (or 1/3 of the total recovery duration), the recovered limit is:

recoveredLimitt = 1/3 * (totalCollBasedLimit − WithdrawalLimitt − 1)

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

The limit continues recovering until it reaches the total collateral-based limit, which is calculated as the
sum of 50% of the active collateral and the WITHDRAWAL_LIMIT_THRESHOLD (set to 10 WStETH in
Version 5):

totalCollBasedLimitt = 50% * ActiveCollateral + 5
Note: The Active Collateral is retrieved after collateral has been sent out to the user. Therefore, the total
collateral-based limit will be calculated using the post-withdrawal active collateral and does not include
the withdrawn amount.

2.2.7 Changes in Version 6:
Version 6In withdrawal limits were removed. Furthermore, the SafeMath libraries that were in the

original Liquity code, but no longer needed with the current compiler version, were removed. A recent
change by the Liquity team for one of the known issues of the system was integrated into the Hedgehog
code: https://github.com/liquity/dev/pull/1044.

Last but not least, some gas optimizations were made.

2.2.8 Changes in Version 7:
Version 7In the precision of the computation of the collateralization ratio has been increased.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 11

https://github.com/liquity/dev/pull/1044
https://chainsecurity.com

3 Limitations and use of report
Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology
For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

• Likelihood represents the likelihood of a finding to be triggered or exploited in practice

• Impact specifies the technical and business-related consequences of a finding

• Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment
procedure.

Likelihood Impact
High Medium Low

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Open Findings
In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

• Security : Related to vulnerabilities that could be exploited by malicious actors

• Design : Architectural shortcomings and design inefficiencies

• Correctness : Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 0

High -Severity Findings 0

Medium -Severity Findings 4

• Risk AcceptedDependency on Current Block Time

• Risk AcceptedReducing Fees by Splitting Transactions

• Code Partially CorrectedMissing Configurations in FeesRouter Compromise Accounting

• AcknowledgedSlow Expansion of the BaseFeeLMAToken Supply Due to High Costs

Low -Severity Findings 7

• AcknowledgedIncorrect Rate Adjustment

• Code Partially CorrectedGas Inefficiency in BaseFeeOracle

• Risk AcceptedAttacker With Sufficient Funds Can Lower Redemption Fees

• Risk AcceptedRedemptions Without Base Rate Increase

• Code Partially CorrectedIncorrect Code Comments

• Risk AcceptedKnown Issues From Liquity Are Present in Hedgehog

• AcknowledgedLack of Documentation

5.1 Dependency on Current Block Time
Design Medium Version 4 Risk Accepted

CS-HOG-066

Version 4

The Price feed verifies the staleness of a price update by comparing the current block number with the
block number of the last price update. In , Hedgehog uses a TIMEOUT of 1600 to determine if a
price update is stale. That means that a price would have to occur within the last 1600 blocks to be
considered fresh.

The current block time on Arbitrum is 0.25 seconds, so a timeout of 1600 blocks translates into 400
seconds or ~33 Etheruem Mainnet blocks.

Note that this condition would change if the block time on Arbitrum is changed. The current iteration of
ArbOS allows a block time as low as 0.1 seconds. More information can be found here.

In that case the timeout would be 1600 * 0.1 = 160 seconds or ~13 Ethereum Mainnet blocks. In case the
block time is lowered even further, the project could risk being permanently stuck in a state where the
price feed is considered stale, if Hedgehog fails to update the price fast enough.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 14

https://web.archive.org/web/20240829091524/https://research.arbitrum.io/t/the-power-of-faster-blocks/9609
https://chainsecurity.com

Version 5Changes in :

The protocol will now be deployed onto Base Chain instead of Arbitrum. Base Chain has a block time of 2
seconds, but other OP Chains (e.g., Unichain) have a 1-second block time, with plans to reduce it to
250ms in the future.

Risk accepted:

The Hedgehog has accepted this risk but has chosen to keep the code unchanged. Their response:

Acknowledged. We are tracking the block times and would make adjustments to the deployment if
anything changes. Currently in tests we've updated the timeout to 200 which corresponds to the
same 400 seconds on Base blockchain

If the block time on Base Chain decreases by too much then PriceFeed can start to consider all prices
as frozen and fallback to the last good price before the change. Hedgehog plans to deploy a new version
of the protocol in that case and expects users to migrate their positions.

5.2 Reducing Fees by Splitting Transactions
Design Medium Version 2 Risk Accepted

CS-HOG-057

The borrowing fee depends on the amount of tokens borrowed compared to the total supply.

BorrowRate = BorrowFloor + BorrowBaseRate * BorrowDecayFactorMinutes + IssuedBFee
TotalBFeeSupply

By splitting the borrowing operation into multiple smaller operations, users can effectively reduce the
overall borrowing fees. This is because each individual call increases the total supply by a smaller
percentage, and the total supply grows with each operation.

Consider a scenario where the current token supply is 10 million tokens, and the base borrowing rate
(BorrowBaseRate) is 0. A user intends to borrow 1 million tokens.

Borrowing 1 million tokens in a single operation would result in a borrowing fee calculated as:

BorrowRate = 0.5% + 1
10 = 10.5%

However, if the user splits the borrowing into two transactions of 500,000 tokens each, the borrowing fee
for each transaction is calculated as follows:

BorrowRate = 0.5% + 0.5
10 = 5.5%

BorrowRate = 0.5% + 0.5
10.5 = 5.3%

TotalBorrowRate = 5.5% × 0.5 + 5.3% × 0.5
10.5 = 5.4%

The user can roughly half the fee they are paying by splitting the borrowing into two transactions. A
sophisticated user can split the borrow further to lower the fees even more, and trade this off against the
gas costs of the additional transactions.

By splitting the borrowing into two operations, the user can significantly reduce the total fee paid. A more
sophisticated approach of further splitting the borrow can reduce the fees even more, balanced against
the gas costs of additional transactions.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The underlying issue is that the amount of fees paid is path dependent, meaning that the fees paid
depend on the path taken to reach the final state. Instead, each marginal token borrowed should have
the same fee independent of if they were borrowed in a large or small transaction.

Similarly, the redemption fees are also path dependent. The redemption fee is calculated as follows:

RedeemRate = RedeemFloor + RedeemBaseRate * RedeemDecayFactorMinutes + RedeemCollateral
TotalCollateral

Note that splitting a redemption into multiple transactions does lower the redemption share
(redeemCollateral/TotalCollateral) and hereby the cost. Each redemption further decreases the collateral
still locked in the system and hereby having an effect in the other direction. However, for all redemptions
that are not the last one, the effect of the decreased collateral is smaller than the effect of the decreased
share of the total collateral.

Note that Hedgehog expects price discovery to mostly happen on the secondary market, due to the high
fees for borrowing and redemption. By exploiting this design flaw, users can effectively reduce the fees
paid for borrowing and redemption. This is a design issue, as the fees paid should be independent of the
path taken to reach the final state.

Risk accepted:

Version 4

Hedgehog has accepted the risk but has decided to keep the redemption fee mechanism unchanged. In
 they have introduced withdrawal limits to mitigate the impact of this issue. They answered:

Withdrawal limits should increase the economic barrier for redemption-type attacks.
Additionally, they would give the DAO and the HDG team time to compensate for any
loss of collateral at their own expense. This means that not only would it prevent
attacks that might be profitable for users, but it would also provide a way to mitigate
the damage from griefing attacks.

Note on audit process: We independently discovered this issue, which is also present in Liquity's
codebase. However, it has a higher severity for Hedgehog, as redemption fees play a more critical role in
limiting the number of redemptions. The Liquity team's write-up on this issue can be found here.

5.3 Missing Configurations in FeesRouter
Compromise Accounting
Correctness Medium Version 1 Code Partially Corrected

CS-HOG-023

The contract FeesRouter is responsible for distributing the protocol fees according to predefined
configurations. Accounts with SETTER role in FeesRouter can set and update such configurations.
However, if there is no configuration for a given percentage, then no fee is distributed.

In case the fee is charged in debt token, function distributeDebtFee() does not mint the respective
BaseFeeLMAToken, thus the total supply of the debt token gets smaller than the total debt owed by all
borrowers. This might render the last trove impossible to close as the circulating supply is less than the
repayment amount.

Similarly, function distributeCollFee() does not distribute fees from the active pool when the
respective configuration is not set in collFeeConfigs.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 16

https://web.archive.org/web/20241003094541/https://github.com/liquity/bold?tab=readme-ov-file#3---path-dependent-redemptions-lower-fee-when-chunking
https://chainsecurity.com

Code partially corrected:

New checks are added in the function distributeDebtFee() and distributeCollFee() that
revert a transaction if the respective configuration is not set. However, the side effect of this approach is
that key functionalities such as opening a trove, or liquidations might be blocked if a configuration is not
properly set in the contract FeesRouter.

5.4 Slow Expansion of the BaseFeeLMAToken
Supply Due to High Costs
Design Medium Version 1 Acknowledged

CS-HOG-027

In Hedgehog's code, the borrowing rate is dependent on the total supply of BaseFeeLMATokens. The
formula used to calculate the borrowing rate is:

BorrowRate = BorrowFloor + BorrowBaseRate + IssuedBFee/TotalBFeeSupply

This formula suggests that a rapid expansion of the token supply is not feasible, as doubling the supply
(IssuedBFee = TotalBFeeSupply) would require the borrower to pay 100% of the borrowed amount as
fees. Note that paying 100% in fees is not feasible, as the user also must cover the gas compensation.

The maximum amount of BaseFeeLMATokens that can be minted is enforced in
BorrowOperations.openTrove() as:

IssuedBFee = BFeeMintedToUser + GasCompensation + BorrowRate * IssuedBFee

In Hedgehog's code, each borrowing event adds the borrowing rate to the BorrowBaseRate, which then
decays over time with a half-life of approximately 1.3 hours (or 78 minutes). If the initial supply is low, the
supply can only increase slowly due to excessive fees on large borrowings and then having to wait until
the fee decays back. A profit-oriented minter would likely only accept a much lower percentage fee than
the maximum possible, so the actual expansion rate would be much lower. It should be noted that an
attacker could grieve the system by creating a very small initial supply, which would require manual
intervention to increase the supply or slow down the system for several weeks.

Acknowledged:

Hedgehog has acknowledged the issue and provided the following reply:

The BaseFeeLMA economy project differs much from the stablecoin-based Liquity.
Particularly, secondary market is the preferred way of obtaining the token for
speculation or hedging. This is due to expected basefee jumps being only partially
offset by the LMA technique, which would pose excessive liquidation risks and lead
to collateral exhaustion in case of unlimited access to borrowing. Incentives for
secondary market participation are therefore given priority over steady token
supply growth.

A profit-oriented agent is, on the other hand, inclined to mint higher initial
supply within the OCR limit, due to zero baserate set for the initial borrowing
transaction. However, the possibility of supply grieving attack suggests that the
initial supply should be generated by the team immediately upon deployment, as a
security measure.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

5.5 Incorrect Rate Adjustment
Correctness Low Version 6 Acknowledged

CS-HOG-083

The Borrow Base Rate and the Redemption Rate are computed incorrectly. The reason is the same for
both (just in different functions), hence, we explain it for the Borrow Base Rate:

The function _calcDecayedBorrowBaseRate() computes the new base rate using
_minutesPassedSinceLastBorrow(), which contains the following code:

(block.timestamp - lastBorrowTime) / SECONDS_IN_ONE_MINUTE;

Then later the lastBorrowTime is updated as follows:

uint256 timePassed = block.timestamp - lastBorrowTime;

if (timePassed >= SECONDS_IN_ONE_MINUTE) {
 lastBorrowTime = block.timestamp;
 emit LastBorrowTimeUpdated(block.timestamp);
}

If the time that has passed is 1 minute and 59 seconds, then _minutesPassedSinceLastBorrow()
will return 1 minute and hence the Borrow Base Rate will be updated based on 1 minute. However, the
lastBorrowTime will be moved forwards by 1 minute and 59 seconds. Hence, almost two minutes
have passed but the Borrow Base Rate has only decayed for one minute. Note that for less regular
updates the relative error will not be as big.

In the case of the Redemption Rate, the variable incorrectly updated is lastRedemptionTime.

Acknowledged:

The Hedgehog has acknowledged the issue, but has decided to keep the code unchanged. They have
provided the following reasoning:

it doesn't seem critical but the fix has significant impact on the figures and
we don't want to diverge from Liquity too much in this regard.

5.6 Gas Inefficiency in BaseFeeOracle
Design Low Version 5 Code Partially Corrected

CS-HOG-075

The feedBaseFeeValue function of the BaseFeeOracle contract needs to be called regularly to
provide the system with up-to-date base fee prices. Hence, its gas costs are relevant, even on a fairly
cheap chain like Base chain.

During its execution a Response struct is stored.

1. The Response is defined as:

struct Response {
 int256 answer; // LogMA50(BaseFeePerGas) * WstETH / ETH ratio in wei
 uint256 blockNumber; // L1 block number from which the last BaseFeePerGas value was retrieved

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

 uint256 currentChainBN; // Current network's block number during which structure was updated
 uint256 roundId; // Round during which the structure was updated
}

However, values like block numbers and round IDs, do not require 256 bit. With smaller value types,
less storage would be consumed by each stored Response. This would lower the execution cost of
feedBaseFeeValue().

2. The Response struct is always stored in a new place. It is unclear whether Response entries from
e.g. ten rounds ago are still required. Otherwise, old Response entries could be overwritten, which
would be significantly cheaper gas-wise.

Code partially corrected:

Version 6In , the blockNumber, currentChainBN, and roundId fields are cast to uint64, so that the
Response struct can be stored in two storage slots instead of four slots. Hedgehog has decided not to
overwrite old Response entries, providing the following reasoning:

We’ve decided that long-term retrieval of the oracle data is necessary for the protocol transparency
so we’ve left the behaviour unchanged.

5.7 Attacker With Sufficient Funds Can Lower
Redemption Fees
Design Low Version 2 Risk Accepted

CS-HOG-056

Version 2In of Hedgehog's code the redemption fee is calculated based on the proportion of collateral
redeemed relative to the total collateral locked in the system. A user can interact with the system only
once per block, which prevents adding collateral and removing collateral to the same trove via flash
loans.

However, an attacker with sufficient collateral can still lower the redemption fee by inflating the system's
collateral. They can borrow additional funds from a 3rd party protocol, e.g., via flashloan, and proceed to
pay back the loan with their own funds. The attack requires at least two open Troves (A and B) and can
be performed within 3 blocks.

Block 100:

1. The attacker deposits their collateral (e.g. 1000 wstETH) into Trove A`.

Block 101:

1. The attackers borrow 1000 wstETH from a 3rd party protocol and add it as collateral to Trove B.

2. They redeem the target trove, paying a lower redemption fee due to the inflated collateral balance.

3. They remove the collateral from Trove A and repay the loan in the same transaction.

Block 102:

1. They remove the collateral from Trove B.

Note that Arbitrum has a block time of 0.25 seconds, which means that the attack can be performed
within a second and pay negligible interest for the borrowed amount.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Risk accepted:

Due to the block-level limits, the impact is limited. Hedgehog is aware of this issue and is accepting the
risk.

5.8 Redemptions Without Base Rate Increase
Security Low Version 2 Risk Accepted

CS-HOG-052

Version 2The of the protocol removed an assertion check from function
TroveManager._updateRedemptionBaseRateFromRedemption. This check previously ensured
that the new base rate was always non-zero after a redemption:

function _updateRedemptionBaseRateFromRedemption(
 uint _WStETHDrawn
) internal returns (uint) {
 ...
 // HEDGEHOG UPDATES: Calculation the fraction now as a ratio of Collateral
 // that is about to get redeemed and a sum of collateral in active & default pools.

 uint redeemedBaseFeeLMAFraction = _WStETHDrawn
 .mul(DECIMAL_PRECISION)
 .div(activePool.getWStETH() + defaultPool.getWStETH());

 // Hedgehog Updates: Remove division by BETA
 uint newBaseRate = decayedRedemptionBaseRate.add(
 redeemedBaseFeeLMAFraction
);

 // cap baseRate at a maximum of 100%
 newBaseRate = LiquityMath._min(newBaseRate, DECIMAL_PRECISION);
 // Hedgehog Updates: Remove assertion check to make sure first redemption
 // does not revert after the bootstrapping period if more then 10^18 WstETH
 // was transfer into the contract
 // assert(newBaseRate > 0); // Base rate is always non-zero after redemption

The change allows a redemption to occur without increasing the base rate of the protocol. This is
possible when the fraction redeemedBaseFeeLMAFraction rounds to zero, which can occur when the
amount of WStETH drawn is small compared to the total collateral in the system.

_WStETHDrawn < totalCollateral
1018

An attacker can exploit this by splitting a large redemption into multiple smaller redemptions to avoid
increasing the base rate of the protocol.

Risk accepted:

Hedgehog is aware of this issue but has decided to keep the code unchanged.

5.9 Incorrect Code Comments
Correctness Low Version 1 Code Partially Corrected

CS-HOG-035

1. The code comment for the variable CommunityIssuance.HOGSupplyCap states that it should
be set to 32 million, however the distribution setters can freely assign any value to it.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

2. The code comment in the contract ActivePool refers to the collateral token as stWStETH instead
of WStETH.

3. In function BorrowerOperations._adjustTrove(), the comment
Use the unmodified _BaseFeeLMAChange here, ... does not match the code which
passes _BaseFeeLMAChange - vars.BaseFeeLMAFee to the internal function
_moveTokensAndWStETHfromAdjustment().

4. The comment for function PriceFeed.fetchPrice() refers to the Liquity oracles.

5. The max deviation allowed for two consecutive prices in PriceFeed is set to 17.6%, however
several code comments refer to other percentages such as 12.5% or 50%.

6. Similarly, the max deviation allowed between main and backup oracle is set to 5%, however
comments are not in line: Return true if the relative price difference is <= 3%.

7. The struct Response in the contract PriceFeed does not include a success flag, however
comments refer to it: ... return a zero response with success = false.

8. The code comments in the function TroveManager._calcRedemptionFee() imply that checks
are now performed in the BorrowerOperations contract, but they are performed in
TroveManager.redeemCollateral().

9. In the function TroveManager._redeemCollateralFromTrove, the comment
Change WStETHLOT calculations formula from ... does not match the code which
calculates the WStETHLot as debt x price.

10. The code comments for function
TroveManager._updateRedemptionBaseRateFromRedemption() refer to a face value rate
of (1 BaseFeeLMA:1 USD) instead of (1 BaseFeeLMA:1 Base fee moving average).
Furthermore, in contrast to the code comments, the WStETH is not converted to BaseFeeLMA, but
the share of the collateral is used to calculate the redemption fee.

11. The code comments of function DefaultPool.increaseBalance() state that the function can
only be called by the active pool, but it can only be called by the TroveManager.

12. The comment above function TroveManager._checkPotentialRecoveryMode() refers to
the price of the pair WStETH:USD, however the price is used is for the pair BaseFeeLMA:ETH.

13. The comment above function TroveManager.getNormalLiquidationPrice() describes
another functionality.

14. The code comment above function
StabilityPool._getCompoundedStakeFromSnapshots() refers to front ends which have
been removed in Hedgehog Protocol.

15. The code comments in the function TroveManager._getCappedOffsetVals() describing the
cappedCollPortion formula do not match the code.

Version 4 :

16. The constant BaseFeeLMA_GAS_COMPENSATION is set to 300.000 * 10e18, however the code
comments refer to 100.000 * 10e6.

17. The code comments above BorrowerOperationsArb.setAddresses() refer to the wrong
variable name lastWithdrawTimestamp.

18. The code comments above function _handleWithdrawlLimit imply that the limit is
limit = old limit + 50% + ..., however the limit is calculated as
limit = old limit + 50% *

19. The code comments above function _handleWithdrawlLimit say that "new limit is greater than
or equal to 50% of the new total collateral". This is not possible for collateral values above the
threshold.

Version 5 :

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

16. Code comments in PriceFeed._scalePriceByDigits() state that the main oracle has 8
digits, but the code uses 18 digits.

17. The URL to EIP 2612 in IERC2612 has been changed to **eips.wStETHeum.org/**.

18. The natspec comments above FeesRouter._getPctRange state that "In case the fee is less
than 3% it's going to round to 5% anyway". However, if the fee is less than 1%, it will be rounded to
0%.

Code partially corrected:

Version 2

Version 5

The incorrect code comments in points 1-4 and 6-15 have been fixed in and incorrect code
comments in points 16-18 have been fixed in .

5.10 Known Issues From Liquity Are Present in
Hedgehog
Design Low Version 1 Risk Accepted

CS-HOG-038

Known issues in Liquity published in the Github advisories and repository's documentation are present in
Hedgehog codebase.

Risk accepted:

Hedgehog is aware of the known problems and leaves them for further examination.

5.11 Lack of Documentation
Correctness Low Version 1 Acknowledged

CS-HOG-021

The functionalities modified by Hedgehog are not properly documented. The documentation for new
functionalities in FeesRouter, BaseFeeOracle, and TroveManager (get**LiquidationPrice()) are
not complete.

Acknowledged:

Hedgehog has improved inline specifications in the last iterations of the codebase, but complete
documentations will be provided in the future.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 22

https://github.com/liquity/dev/security
https://github.com/liquity/dev?tab=readme-ov-file#known-issues
https://chainsecurity.com

6 Resolved Findings
Here, we list findings that have been resolved during the course of the engagement. Their categories are
explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

Critical -Severity Findings 5

• Code CorrectedCollateral Surplus Is Stuck in the Contract

• Code CorrectedIncorrect Price Used for Collateralization Ratio

• Code CorrectedRedeemed Amount Does Not Account for Decimals

• Code CorrectedWrong Conversion Formula Used in _getCappedOffsetVals

• Code CorrectedWrong Decimals Returned by _computeCR

High -Severity Findings 11

• Code CorrectedLiquidations Are Blocked From Withdrawal Limit

• Code CorrectedWithdrawal Limit Does Not Track Collateral

• Code CorrectedIncompatible Interface With BaseFeeOracleArb

• Code CorrectedGas Compensation Is Ignored in Trove Redemption

• Code CorrectedGas Compensation Is Not Accounted for Correctly When Closing a Trove

• Code CorrectedPrice Feed Returns Wrong Price

• Code CorrectedPrice Feed Stores and Returns Wrong Decimals

• Specification ChangedRedemption Fees Can Be Lowered to Floor Value

• Code CorrectedRedemption Rate Double Counts the Redemption Share

• Code CorrectedWithdrawing wstETH Gains to Trove Reverts

• Code CorrectedWrong Conversion Rate Used in HintHelpers

Medium -Severity Findings 23

• Code CorrectedAdversary Can Keep Withdrawal Limit Tiny

• Code CorrectedIncorrect CommunityIssuance Configuration Can Break the StabilityPool

• Code CorrectedClosing a Trove Does Not Update the Withdrawal Limit

• Code CorrectedDouble Counting of Full Redemptions in Withdrawal Limit Calculation

• Code CorrectedLimit Can Exceed Active Collateral

• Code CorrectedLiquidations Update Withdrawal Limit in an Inconsistent Way

• Code CorrectedWithdrawal Limit Reset on Collateral Deposits

• Code CorrectedIncorrect Timeout Value in PriceFeedArb

• Code CorrectedLiquidation Price Has Wrong Decimals

• Specification ChangedLocking of Troves Is Longer Than Specified

• Code CorrectedChange of Issuance Curve Has Unexpected Side Effects

• Code CorrectedChosen Values for Gas Compensation and Minimum Debt Are Low

• Code CorrectedClosing Troves Requires Borrowers Having Larger Balance Than Needed

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 23

https://chainsecurity.com

• Code CorrectedDistribution Functions in FeesRouter Use Wrong Configs

• Specification ChangedFunction _getUSDValue Computes Wrong Value

• Code CorrectedGas Compensation Not Accounted on Redemption Hints

• Code CorrectedInconsistent Definition of Redemption Share

• Code CorrectedMismatch of NICR Specifications With Implementation

• Code CorrectedPrice Feed Compares Timestamp to Blocknumber

• Code CorrectedPriceFeed Does Not Check if Main Oracle Recovers

• Specification ChangedRedemption Share Is Rounded to Zero

• Code CorrectedUnusual Decimals Used for Values in StabilityPool

• Code CorrectedWrong Value Used to Calculate the Borrowing Rate With Decay

Low -Severity Findings 19

• Code CorrectedCollateralization Ratio Is Rounded Down

• Code CorrectedAdversary Can Slow the Recovery of Withdrawal Limit

• Code CorrectedOutdated Specification for _handleWithdrawalLimit

• Code CorrectedPrecision Issue in Withdrawal Limit Calculation

• Specification ChangedUnclear Specification Regarding Oracle Decimals

• Code CorrectedWithdrawal Limit Function Has Discontinuities

• Code CorrectedMagic Value for Expand Duration

• Code CorrectedMissing Event When Changing Withdrawal Limit

• Code CorrectedWithdrawal Threshold Can Be Circumvented by Splitting Transactions

• Code CorrectedUnnecessary Limitation When Opening a Trove

• Code CorrectedEvent BorrowBaseRateUpdated Is Emitted Twice

• Code CorrectedExcess Fee Distribution in FeesRouter

• Specification ChangedFunction _findPriceBelowMCR Can Be Improved

• Code CorrectedImmutable Parameters Should Be Constants

• Code CorrectedIncomplete Error Message

• Code CorrectedIncorrect Validation of Repayments

• Code CorrectedInitial Stake Rounds Down to Zero

• Code CorrectedMissing Event When Increasing Balance

• Code CorrectedMissing Sanity Checks

Informational Findings 10

• Code CorrectedMisleading Variable Name in BorrowerOperationsArb

• Code CorrectedMisleading Variable Name in LiquityMath

• Code CorrectedWithdrawal Limit Does Not Take Collateral From Redistributions Into Account

• Code CorrectedRemaining ToDos

• Code CorrectedGas Optimizations

• Code CorrectedIncorrect Interfaces

• Code CorrectedMisleading Variable Name in BaseFeeOracle

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 24

https://chainsecurity.com

• Code CorrectedMisleading Variable Name in FeesRouter

• Code CorrectedMisleading Variable Name in TroveManager

• Code CorrectedVulnerable Dependency

6.1 Collateral Surplus Is Stuck in the Contract
Correctness Critical Version 1 Code Corrected

CS-HOG-001

In Hedgehog's code, the function TroveManager.liquidateTroves() function fails to call
increaseBalance to update the wstETH balance of the collateral surplus pool.

Similarly, TroveManager._redeemCloseTrove() fails to update the wstETH balance when sending
the surplus wstETH. Now, whenever a user calls CollSurplusPool.claimColl() , the call reverts
on underflows of WStETH and the funds are stuck in the contract.

Code corrected:

The function TroveManager.liquidateTroves() has been revised to call increaseBalance()
when sending the collateral to the surplus pool:

if (totals.totalCollSurplus > 0) {
 collSurplusPool.increaseBalance(totals.totalCollSurplus);
 contractsCache.activePool.sendWStETH(
 address(collSurplusPool),
 totals.totalCollSurplus
);
}

Similarly, the function _redeemCloseTrove() has been updated to increaseBalance() when
sending collateral from the active pool to the surplus pool.

6.2 Incorrect Price Used for Collateralization Ratio
Correctness Critical Version 1 Code Corrected

CS-HOG-002

The function LiquityMath._computeCR is crucial to compute the collateralization ratio (CR) of a trove
or the system:

uint newCollRatio = _coll.mul(DECIMAL_PRECISION).div(_debt).div(_price);

The value of _price is retrieved from PriceFeed which returns the price for the pair
BaseFeeLMA:ETH. However, the function _computeCR() is called with _coll representing a WStETH
amount and _debt representing a BaseFeeLMA amount. Therefore, the conversion of collateral amount
into debt token is incorrect.

Code Corrected:

The PriceFeed now returns the price for the asset pair BaseFeeLMA:WstETH. Note that decimals are
not correct yet (see: Wrong decimals returned by _computeCR).

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.3 Redeemed Amount Does Not Account for
Decimals
Correctness Critical Version 1 Code Corrected

CS-HOG-003

The function TroveManager._redeemCollateralFromTrove() calculates the amount of WstETH
that can be redeemed using the following formula:

singleRedemption.WStETHLot = singleRedemption.BaseFeeLMALot.mul(_price);

BaseFeOracle returns the price for the token pair ETH/BaseFeeLMA, hence an incorrect price is used to
convert BaseFeeLMALot into WStETHLot. Furthermore, the oracle returns prices with 1 decimal which
is not accounted in the formula above, causing an error on the redeemed amount with an order of
magnitude.

Version 2 :

The codebase had been updated to use 18 decimals for the BaseFeeLMA token, and 18 decimals for the
price. Thus, the formula:

singleRedemption.BaseFeeLMALot.mul(_price);

returns a value in 36 decimals instead of 18, hence computing a wrong result.

Code corrected:

The codebase has been updated to divide the result of the multiplication by 1e18 to account for the 18
decimals in the price.

6.4 Wrong Conversion Formula Used in
_getCappedOffsetVals
Correctness Critical Version 1 Code Corrected

CS-HOG-004

The function TroveManager._getCappedOffsetVals() incorrectly converts a debt amount into
collateral:

uint cappedCollPortion = _entireTroveDebt.mul(MCR).mul(_price).div(DECIMAL_PRECISION);

The _price retrieved from the PriceFeed returns the exchange ratio for the token pair
BaseFeeLMA:ETH and is incorrectly used to convert BaseFeeLMA tokens into WStETH. Furthermore,
the debt amount _entireTroveDebt is in the base fee token (6 decimals), while the price uses 1
decimal. Thus, the division by 1e18 is incorrect.

Version 2 :

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

The PriceFeed has been updated to return the price for the token pair BaseFeeLMA:WStETH. Further
the BaseFeeLMA token and the price now have 18 decimals.

Thus, the formula:

uint cappedCollPortion = _entireTroveDebt.mul(MCR).mul(_price).div(DECIMAL_PRECISION);

returns a value of 36 decimals instead of 18, hence computing a wrong collateral amount. Furthermore,
the intermediate result _entireTroveDebt.mul(MCR).mul(_price) has 48 decimals and can
overflow.

Code corrected:

The function _getCappedOffsetVals has been updated to divide the intermediary result by
DECIMAL_PRECISION to normalize the result to 18 decimals:
// Changed the cappedCollPortion formula from [entireTroveDebt] * [MCR] / [price] to => [entireTroveDebt] * [MCR] / [DECIMAL_PRECISION] * [price] / [DECIMAL_PRECISION]
uint cappedCollPortion = _entireTroveDebt
 .mul(MCR)
 .div(DECIMAL_PRECISION)
 .mul(_price)
 .div(DECIMAL_PRECISION);

6.5 Wrong Decimals Returned by _computeCR
Correctness Critical Version 1 Code Corrected

CS-HOG-005

The function LiquityMath._computeCR() does not handle decimals correctly, therefore returning
wrong collateralization ratios (CR):

uint newCollRatio = _coll.mul(DECIMAL_PRECISION).div(_debt).div(_price);

Note that _coll is in 18 decimals (WStETH), _debt is in 6 decimals (BaseFeeLMA), while _price has
1 decimal (BaseFeeOracle). Therefore, the computed value is in 29 decimals. This is a severe issue
since the system parameters MCR and CCR are in 18 decimals. Therefore, even undercollateralized troves
would pass checks for MCR and CCR.

Version 2 :

The codebase had been updated to use 18 decimals for the BaseFeeLMA token, and 18 decimals for the
price. Thus, the formula:

uint newCollRatio = _coll.mul(DECIMAL_PRECISION).div(_debt).div(_price);

returns a value with no decimals instead of 18, hence computing a wrong CR value.

Code corrected:

The codebase now multiplies by DECIMAL_PRECISION (10**18) before dividing by the price, hence the
CR is now in 18 decimals.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

6.6 Liquidations Are Blocked From Withdrawal
Limit
Design High Version 4 Code Corrected

CS-HOG-059

The Hedgehog specifies in function TroveManagerArb._sendGasCompensation() that liquidations
should not revert when the withdrawn collateral exceeds 80% of the current withdrawal limit.

However, the function then updates the withdrawal limit in
BorrowerOperationsArb._handleWithdrawalLimit():

(uint256 fullLimit, uint256 singleTxWithdrawable) = LiquityMath
 ._checkWithdrawlLimit(
 lastWithdrawlTimestamp,
 EXPAND_DURATION,
 unusedWithdrawlLimit,
 activePool.getWStETH()
);

if (_withSingleTxLimit && singleTxWithdrawable < _collWithdrawal) {
 revert(
 "BO: Cannot withdraw more then 80% of withdrawble in one tx"
);
}

// Update current unusedWithdrawlLimit
unusedWithdrawlLimit = fullLimit - _collWithdrawal;

If the collateral withdrawn exceeds the limit, the transaction will not revert with "BO: Cannot withdraw
more than 80% of withdrawable in one tx" since _withSingleTxLimit is false during liquidations.
However, since the collateral withdrawn exceeds the calculated value of full_limit, updating the unused
withdrawal limit will cause an underflow and the transaction will revert. This effectively blocks all
liquidations once the withdrawal limit is reached.

Code Corrected:

A ternary operator was added to prevent the arithmetic underflow:

unusedWithdrawalLimit = fullLimit > _collWithdrawal
 ? fullLimit - _collWithdrawal
 : 0;

Hence, the code has been fixed.

6.7 Withdrawal Limit Does Not Track Collateral
Design High Version 4 Code Corrected

CS-HOG-064

The withdrawal limit is expected to be smooth to make its behavior predictable for outside users.
However, there are certain interactions that are not accounted for in the calculation of the withdrawal limit
and leading to erratic behavior.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

1. The withdrawal limit is equal to the collateral value up to the WITHDRAWAL_LIMIT_THRESHOLD
and half of the collateral value or less afterward. The limit jumps on this threshold value.

• If the active pool has 99 wstETH and the limit is 99, adding 2 wstETH causes the limit to
become 50.5.

2. When the unused withdrawal limit allows pushing the collateral below the threshold, all collateral
can be withdrawn.

• For example, if the active pool has 100 wstETH and the limit is 50, withdrawing some collateral
causes the limit to reset to the threshold (100).

activePool. getWStETH() − WITHDRAWAL_LIMIT_THRESHOLD ≤ unusedWithdrawalLimit

Code corrected:

The code has been corrected to make withdrawal limits track the collateral more smoothly. However, the
withdrawal limit function is not smooth close to the withdrawal limit: Withdrawal limit function has
discontinuities.

6.8 Incompatible Interface With
BaseFeeOracleArb
Correctness High Version 3 Code Corrected

CS-HOG-054

The contract PriceFeedArb imports the interface IBaseFeeOracle which declares the following
function:

function getRoundData(uint256 _roundId) external view
 returns (uint256, int256, uint256, uint256, uint256);

However, the respective functions implemented in BaseFeeOracleArb uses a different input type
(uint80 instead of uint256), which results in a different function selector:

function getRoundData(uint80 _roundId) public view
 returns (uint80, int256, uint256, uint256, uint80);

Furthermore, the types of return values for both functions getRoundData() and latestRoundData()
in BaseFeeOracleArb are different from the interface declaration.

Code corrected:

Version 4In of the contract, the function signature of getRoundData() and latestRoundData() in
BaseFeeOracleArb is updated to match the interface declaration.

6.9 Gas Compensation Is Ignored in Trove
Redemption
Correctness High Version 1 Code Corrected

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

CS-HOG-006

When calculating the amount of BaseFeeTokens required to redeem a Trove in
TroveManager._redeemCollateralFromTrove(), the gas compensation reimbursed to the user is
not deducted from the debt of the Trove.

If the redeemer provides a value for _maxBaseFeeLMAamount that is large enough to cover the full debt
of a Trove, the Trove should be closed. However, since the gas compensation is not deducted from the
debt, the new debt becomes zero and the redemption will be subsequently canceled.

function _redeemCollateralFromTrove(..., _maxBaseFeeLMAamount, ...) {
 singleRedemption.BaseFeeLMALot = LiquityMath._min(_maxBaseFeeLMAamount, Troves[_borrower].debt);
 ...
 uint newDebt = (Troves[_borrower].debt).sub(singleRedemption.BaseFeeLMALot);
 ...
 if (newDebt == BaseFeeLMA_GAS_COMPENSATION) {
 ... close trove ...
 else {
 if (
 newNICR != _partialRedemptionHintNICR || _getNetDebt(newDebt) < MIN_NET_DEBT
) {
 singleRedemption.cancelledPartial = true;
 return singleRedemption;
 }
 ... update trove ...
 }
}

The function TroveManager.redeemCollateral() then halts any additional redemptions, assuming
that the last Trove was partially redeemed, and the redeemer's collateral is exhausted.

This issue can be exploited to cause a DoS attack against the redemption of multiple Troves in a single
transaction, as redeeming the first one halts execution. It is still possible to partially redeem a Trove. A
single Trove could be fully redeemed by setting
_maxBaseFeeLMAamount = Troves[_borrower].debt - BaseFeeLMA_GAS_COMPENSATION.

Moreover, an attacker could exploit this by reducing their Trove to a lower debt value than the gas
compensation. This would create a trove that is not profitable to liquidate. Note that this is not possible in
the current system since
MIN_NET_DEBT = BaseFeeLMA_GAS_COMPENSATION = 0.1 BaseFeeLMAToken.

Code corrected:

The function TroveManager._redeemCollateralFromTrove() has been updated to deduct the
gas compensation from the debt of the Trove.

function _redeemCollateralFromTrove(..., _maxBaseFeeLMAamount, ...) {
 singleRedemption.BaseFeeLMALot = LiquityMath._min(_maxBaseFeeLMAamount, Troves[_borrower].debt.sub(BaseFeeLMA_GAS_COMPENSATION));
 ...
}

6.10 Gas Compensation Is Not Accounted for
Correctly When Closing a Trove
Correctness High Version 1 Code Corrected

CS-HOG-007

When opening a trove the system mints
_BaseFeeLMAAmount - BaseFeeLMA_GAS_COMPENSATION - BaseFeeLMAFee to the user and
records _BaseFeeLMAAmount as trove's debt. When closing the trove, the user must burn

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

debt - BaseFeeLMA_GAS_COMPENSATION from their balance and
BaseFeeLMA_GAS_COMPENSATION is burned from the GasPool.

After opening and closing a trove the User, GasPool and FeesRouter (their beneficiary) should have the
following net balances of BaseFeeLMA tokens:

1. User: Initial_Balance - BaseFeeLMAFee

2. GasPool: BaseFeeLMA_GAS_COMPENSATION - BaseFeeLMA_GAS_COMPENSATION = 0

3. FeesRouter: BaseFeeLMAFee

However, the function closeTrove() burns the gas compensation from both the user and the gas pool
address:

_repayBaseFeeLMA(
 activePoolCached,
 baseFeeLMATokenCached,
 msg.sender,
 debt
);
_repayBaseFeeLMA(
 activePoolCached,
 baseFeeLMATokenCached,
 gasPoolAddress,
 BaseFeeLMA_GAS_COMPENSATION
);

This violates the specifications that gas compensation is refunded to borrowers when closing a trove.
Furthermore, the accounting of active pool is compromised as its debt is decreased with
debt + BaseFeeLMA_GAS_COMPENSATION instead of debt.

Code corrected:

Version 2The accounting of gas compensation has been revised in . When opening a trove, the system
records the total amount (minted amount + fee + gas compensation) as a debt of a user. When closing
the trove, the gas compensation is withdrawn from the gas pool, while the rest of the debt (minted
amount + fee) is withdrawn from the user.

6.11 Price Feed Returns Wrong Price
Correctness High Version 1 Code Corrected

CS-HOG-008

The Function PriceFeed.fetchPrice() stores/returns the Main Oracle response when it should
return the Backup Oracle response in four cases:

• Main Oracle is untrusted (Case 2):

// Otherwise, use Backup price
return _storeGoodPrice(mainOracleResponse, decimals);

• Main Oracle is frozen (Case 4):

// If Backup is working, return Backup current price
return _storeGoodPrice(mainOracleResponse, decimals);

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

• Main Oracle response is frozen and Backup Oracle is working (Case 4):

// if Main Oracle is frozen and Backup is working, keep using Backup (no status change)
return _storeGoodPrice(mainOracleResponse, decimals);

• Main Oracle response is live after being previously frozen, but the response is not within 5% of
Backup Oracle response (Case 4):

// Otherwise if Main Oracle is live but price not within 5% of Backup, distrust Main Oracle, and return Backup price
_changeStatus(Status.usingBackupMainUntrusted);
return _storeGoodPrice(mainOracleResponse, decimals);

In these cases, the value is either incorrect, zero or outdated. An incorrect value can result in liquidations
not getting performed when they should or health positions getting liquidated. If the value is zero the CR
calculation that is performed on any user operations will fail, since it divides by zero (CR = coll / debt /
price).

Code corrected:

The function PriceFeed.fetchPrice() now returns the Backup Oracle response in the four cases
mentioned above.

6.12 Price Feed Stores and Returns Wrong
Decimals
Correctness High Version 1 Code Corrected

CS-HOG-009

The Function PriceFeed.fetchPrice() stores/returns the price of the Backup Oracle with the
decimals of the Main Oracle when backup is live, and the oracles responses differ too much in price:

_changeStatus(Status.usingBackupMainUntrusted);
return _storeGoodPrice(backupOracleResponse, decimals);

Similarly, the function calculates the price deviation of the current and previous Backup Oracle response
with the decimals of the Main Oracle in two cases:

// --- CASE 2: The system fetched last price from Backup ---
if (status == Status.usingBackupMainUntrusted) {
 if (
 _priceChangeAboveMax(
 backupOracleResponse,
 prevBackupOracleResponse,
 decimals
)
) {

// If Backup is broken, both oracles are untrusted, and return last good price
if (
 _backupOracleIsBroken(backupOracleResponse) ||
 _priceChangeAboveMax(
 backupOracleResponse,
 prevBackupOracleResponse,
 decimals

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

)
)

Having two oracles with different decimals has severe consequences for the system as the stored prices
have a large error.

Code corrected:

The function fetchPrice() has been revised to use the correct decimals in the code parts listed
above.

6.13 Redemption Fees Can Be Lowered to Floor
Value
Design High Version 1 Specification Changed

CS-HOG-010

In Hedgehog's code, the redemption fee is calculated based on the proportion of collateral redeemed
relative to the total collateral locked in the system.

RedRate = RedFloor + RedBaseRate * MinuteDecayFactorMinutes + RedemptionEth/Collateral

An attacker can exploit this by inflating the system's collateral before redeeming a trove, thereby reducing
their redemption fee. The collateral can be inflated by either adjusting a trove's collateral or by adding a
new trove with a large amount of collateral. Here's a step-by-step scenario with an attacker that has an
open Trove:

1. The attackers borrow a large amount of wstETH in a flash loan and add it as collateral to their
Trove.

2. They redeem the target trove, paying a lower redemption fee due to the inflated collateral balance.

3. They remove the collateral from the trove and repay the flash loan.

Alternatively, an attacker can create a trove with the minimum debt and a large amount of collateral,
execute Steps 1-3, and then repay their debt. With a large enough flash loan, an attacker will only pay
redemption rate close to the floor rate (set to 0.5% in Hedgehog's code). The low redemption fee makes
it likely that all collateral is exhausted when the base fee is underpriced in the secondary market.

Specification changed:

Version 2A new mechanism was implemented in to forbid adding collateral to a trove via flash loans. The
contract BorrowerOperations now limits the number of operations that modify a trove (such as open,
adjust, or close) to at most once per block. Hence, it is not feasible anymore to add collateral to a trove
and withdraw in the same transaction (required in case of flash loans).

Version 2

Note that a variant of this attack (Attacker with sufficient funds can lower redemption fees) is still possible
in .

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

6.14 Redemption Rate Double Counts the
Redemption Share
Correctness High Version 1 Code Corrected

CS-HOG-011

The function TroverManger.redeemCollateral() double counts the redemption share
(redemptionEth / Collateral) when calculating the redemption fees. First, it is added to the
redemptionBaseRate in _updateRedemptionBaseRateFromRedemption and then it is added to the
redemption rate in _getRedemptionFee:

function redeemCollateral(..) {
 ...
 _updateRedemptionBaseRateFromRedemption(totals.totalWStETHDrawn);
 // Calculate the WStETH fee
 totals.WStETHFee = _getRedemptionFee(totals.totalWStETHDrawn);
 ...
}

As fees may not exceed 100%, double counting of fees will block redemptions of more than 50% of
collateral and make redemptions considerably more expensive and thus weaken the lower peg of the
base fee token.

Code corrected:

The call path triggered by function _getRedemptionFee() has been refactored to avoid double
counting of redemption share when computing the redemption fee:

function _getRedemptionFee(uint _WStETHDrawn) internal view returns (uint) {
 return _calcRedemptionFee(getRedemptionRate(), _WStETHDrawn);
}

The function getRedemptionRate computes the current fee rate and now does not depend on the
redemption share.

6.15 Withdrawing wstETH Gains to Trove Reverts
Correctness High Version 1 Code Corrected

CS-HOG-012

The Function StabilityPool.withdrawWStETHGainToTrove() calls into
borrowerOperations.moveWStETHGainToTrove() to pull collateral from the stability pool.
However, since the StabilityPool does not provide any allowance to BorrowerOperations, the
call always reverts. That will block all users from withdrawing their wstETH gains to their Trove.

Code corrected:

The function StabilityPool.withdrawWStETHGainToTrove() now approves the
BorrowerOperations contract.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

function withdrawWStETHGainToTrove(
 ...
 WStETHToken.approve(address(borrowerOperations), depositorWStETHGain);
 borrowerOperations.moveWStETHGainToTrove(
 msg.sender,
 _upperHint,
 _lowerHint,
 depositorWStETHGain
);
}

6.16 Wrong Conversion Rate Used in HintHelpers
Correctness High Version 1 Code Corrected

CS-HOG-013

The function HintHelpers.getRedemptionHints() incorrectly converts a debt amount into
collateral:

uint newColl = WStETH.sub(maxRedeemableBaseFeeLMA.mul(_price));

The debt amount maxRedeemableBaseFeeLMA is in the base fee token (6 decimals), the collateral is in
WStETH token (18 decimals), while _price stores the conversion rate for the pair BaseFeeLMA:ETH in
1 decimal. Thus, the conversion is incorrect.

Version 2 :

The codebase had been updated to use 18 decimals for the BaseFeeLMA token, and 18 decimals for the
price. Thus, the formula:

maxRedeemableBaseFeeLMA.mul(_price)

returns a value of 36 decimals instead of 18, hence computing a wrong collateral amount.

Code corrected:

The codebase has been updated to divide the intermediate value
maxRedeemableBaseFeeLMA.mul(_price) by DECIMAL_PRECISION, hence the result has 18
decimals.

 uint newColl = WStETH.sub(
 maxRedeemableBaseFeeLMA.mul(_price).div(
 DECIMAL_PRECISION
)
);

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

6.17 Adversary Can Keep Withdrawal Limit Tiny
Security Medium Version 5 Code Corrected

CS-HOG-072

One system assumption is that once the ActivePool holds a significant amount of funds, then the
decay of the withdrawal limit will be too fast that an attacker could keep it small over a longer period of
time without investing significant funds.

Below we explain why this might not be true. We assume that the ActivePool holds 20,000 WstETH
and that the attacker holds 1 WstETH. The attacker opens two troves and initially deposits the 1 WstETH
into the first one.

Each block, the attacker does the following:

• Withdraws 1 WstETH from the trove it is currently in

• Deposits 1 WstETH into the other trove

Hence, every two seconds (Base Chain Block Interval), the withdrawal limit will:

• Compute the decay accordingly to the formula

• Decrease unusedWithdrawalLimit by 1 WstETH due to the withdrawal

• Increase unusedWithdrawalLimit by 0.5 WstETH due to the deposit

Therefore, the question is, whether the decay will be larger than 0.5 WstETH. The maximum decay in this
situation is:

(totalCollBasedLimit - _unusedWithdrawalLimit) * percentageToGet

= (10,005 WstETH - 0 WstETH) * (2 seconds / 720 minutes)

< 0.5 WstETH

(Note that technically the used attack amounts would be slightly different to not cause any reverts, but
this has been omitted for readability.)

As the decay is smaller than the decrease introduced by the attacker, the attacker needs just 1/20,000 of
the ActivePool funds to keep the withdrawal limit slightly above zero. The attacker only pays for
transaction costs, which are relatively small on Base chain.

Code corrected:

Version 6In , the withdrawal limits have been removed resolving the griefing attack vector described.

6.18 Incorrect CommunityIssuance Configuration
Can Break the StabilityPool
Security Medium Version 5 Code Corrected

CS-HOG-073

In the CommunityIssuance contract three different parameters can be set by a privileged role that
control the issuance of HOG tokens. The StabilityPool calls the CommunityIssuance contract to
calculate issuance and retrieve HOG tokens. The following could theoretically happen:

1. Inside the CommunityIssuance an incorrect value is set, e.g. setHOGSupplyCap is set to a
value ten times higher than the actual supply of HOG.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

2. An action inside the StabilityPool, like provide or withdraw, causes the StabilityPool to
call issueHOG where the incorrect issuance will be calculated. The StabilityPool will calculate
the marginalHOGGain and thereby remember how much HOG each user is entitled to. Even if the
error is recognized now, the values are already stored inside the StabilityPool.

3. Whenever users use the provide or withdraw actions of the StabilityPool these precomputed
HOG tokens are actually requested using CommunityIssuance.sendHOG.

4. Soon, no more HOG are inside the CommunityIssuance and the sendHOG command reverts.

5. From now on, all provide and withdraw operations on the StabilityPool will revert, and the
funds are stuck inside the StabilityPool.

Code corrected:

The three parameters HOGSupplyCap`, ``ISSUANCE_FACTOR and totalHOGIssued in
CommunityIssuance contract must now be modified in a two-step approach. For example the
HOGSupplyCap must be be modified by first calling proposeHOGSupplyCap, and the change becomes
effective after acceptNewHOGSupplyCap is called. The privileged role modifying issuance
(DISTRIBUTION_SETTER) is expected to verify that the parameters are correct before calling accept*.
Note, that this role can call the propose as well as accept functions. Therefore, the role could still
negatively impact the system if it becomes malicious.

6.19 Closing a Trove Does Not Update the
Withdrawal Limit
Design Medium Version 4 Code Corrected

CS-HOG-060

The function TroveManager.closeTrove() withdraws collateral from the system. However, it does
not update the withdrawal limit accordingly. As a result, the withdrawal limit can be trivially circumvented.
Furthermore, one can inflate the limit by opening new troves, and closing them in the next block.

Code Corrected:

Version 5In of the protocol, the function TroveManager.closeTrove() has been updated to update
the withdrawal limit accordingly.

6.20 Double Counting of Full Redemptions in
Withdrawal Limit Calculation
Design Medium Version 4 Code Corrected

CS-HOG-061

The function TroveManagerArb.redeemCollateral() incorrectly double counts the collateral
withdrawn by full redemptions when calculating the withdrawal limit.

First, the amount of collateral of the (fully) redeemed trove is accounted towards the withdrawal limit in
_redeemCloseTrove. Second the collateral of all troves redeemed is collected in the summary variable
totalWStETHDrawn that is then passed to function handleWithdrawlLimit a second time.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

function redeemCollateral(uint _WStETHDrawn) public {

 IBorrowerOperations(borrowerOperationsAddress).handleWithdrawlLimit(
 totals.totalWStETHDrawn,
 true
);

As a result, the collateral withdrawn for full redemptions is overestimated by a factor of 2, leading to lower
withdrawal limits than intended.

Code corrected:

Version 5In the withdrawal limit is only updated once, at the end of the function redeemCollateral.

6.21 Limit Can Exceed Active Collateral
Design Medium Version 4 Code Corrected

CS-HOG-062

In the function BorrowerOperationsArb._handleWithdrawalLimit(), the unused withdrawal
limit is set to the collateral in the active pool if the active pool holds less collateral than the withdrawal
limit threshold.

if (activePool.getWStETH() > WITHDRAWL_LIMIT_THRESHOLD) {
...
} else {
 unusedWithdrawlLimit = activePool.getWStETH();
}

However, when removing collateral via _adjustTrove, the wstETH balance is only updated (in
_moveTokensAndWStETHfromAdjustment()) after the withdrawal limit is already set. This means
that the unusedWithdrawalLimit will be set to the collateral in the active pool prior to the withdrawal
and hereby exceeding the amount of collateral after the withdrawal has been made. The same issue can
be found in the calls to function BorrowerOperationsArb.handleWithdrawlLimit() in the
functions redeemCollateral() and _redeemCloseTrove() in TroveManagerArb.

These discrepancies can accumulate over time, severely restricting the effectiveness of withdrawal limits.

Code corrected:

Version 5In the logic of updating the unused withdrawal limit has been completely revamped.

1. If the active pool balance is below the withdrawal limit threshold, the function
LiquityMath._checkWithdrawalLimit() returns the current collateral in the active pool.

function _checkWithdrawalLimit(
 ...
) internal view returns (uint256 fullLimit, uint256 singleTxWithdrawable) {
// If coll in the system is greater than the threshold - we check if user may withdraw the desired amount
// Otherwise they are free to withdraw whole amount
if (_currentTotalColl <= WITHDRAWAL_LIMIT_THRESHOLD) {
 return (_currentTotalColl, _currentTotalColl);
}

2. The unused withdrawal limit is then set to the fullLimit minus the collateral to be withdrawn.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

function _handleWithdrawalLimit(
 uint256 _collWithdrawal,
 bool _isLiquidation
) internal {
 (uint256 fullLimit, uint256 singleTxWithdrawable) = LiquityMath
 ._checkWithdrawalLimit(
 lastWithdrawalTimestamp,
 EXPAND_DURATION,
 unusedWithdrawalLimit,
 activePool.getWStETH()
);

 ...
 // Update current unusedWithdrawalLimit
 unusedWithdrawalLimit = fullLimit > _collWithdrawal
 ? fullLimit - _collWithdrawal
 : 0;

 ...
}

3. Functions redeemCollateral(), _adjustTrove(), and other related functions always call
_handleWithdrawalLimit at the end, ensuring that the total collateral used in the calculation does
not include the collateral withdrawn from the active pool.

In combination, the changes ensure that the unused withdrawal limit is below the amount of collateral in
the active pool.

6.22 Liquidations Update Withdrawal Limit in an
Inconsistent Way
Design Medium Version 4 Code Corrected

CS-HOG-063

On a liquidation collateral is moved from the active pool:

1. to the Stability Pool to offset debt and collateral

2. to the Default Pool to redistribute debt and collateral

3. to the CollSurplusPool to store surplus collateral (optional)

4. to the caller as gas compensation

The withdrawal limit is updated on point 4 but not in the other cases.

Code corrected:

Version 5In , the withdrawal limit is updated once at the end of the functions batchLiquidateTroves
and liquidateTroves with the total amount of liquidated collateral (including the gas compensation
given to the caller).

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

6.23 Withdrawal Limit Reset on Collateral
Deposits
Design Medium Version 4 Code Corrected

CS-HOG-065

Version 4 of the protocol introduced withdrawal limits. According to the design, each new collateral
deposit should increase the withdrawal limit by 50% of the deposit amount. However, the function
BorrowerOperationsArb._updateWithdrawlLimitFromCollIncrease() resets the withdrawal
limit to 50% of the (new) active collateral:

function _updateWithdrawlLimitFromCollIncrease(...) internal {
 uint256 newColl = _previousColl + _collIncrease;

 uint256 newLimit = (_previousColl / 2) + (_collIncrease / 2); // equivalent to newColl / 2
 if (newLimit >= _previousColl) {
 ...
 }

 unusedWithdrawlLimit = newLimit;
}

Therefore, any minimal deposit nullifies the effect of previous withdrawals and resets the limit.

Code corrected:

Version 5In , the function _updateWithdrawlLimitFromCollIncrease has been removed, and
instead BorrowerOperations._activePoolAddColl() increases the withdrawal limit by half of the
deposit amount sent to the active pool.

function _activePoolAddColl(
 IActivePool _activePool,
 uint _amount
) internal {
 WStETHToken.safeTransferFrom(msg.sender, address(_activePool), _amount);
 activePool.increaseBalance(_amount);

 // Update withdrawal Limit from collateral addition.
 unusedWithdrawalLimit = unusedWithdrawalLimit + _amount / 2;
}

6.24 Incorrect Timeout Value in PriceFeedArb
Correctness Medium Version 3 Code Corrected

CS-HOG-055

The contract PriceFeedArb operates on Arbitrum block numbers and the timeout for fresh prices is set
to 69 blocks, roughly 17 seconds. The timeout is lower than intended, therefore the contract
PriceFeedArb would consider prices returned by BaseFeeOracleArb as stale.

Code corrected:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

Version 4In the timeout was updated to 1600 blocks or around 400 seconds at the current block time on
Arbitrum. Security considerations of a change in Arbitrum block time are discussed in another issue, see
Dependency on current block time.

6.25 Liquidation Price Has Wrong Decimals
Design Medium Version 2 Code Corrected

CS-HOG-050

The function LiquityMath._findPriceBelowMCR() calculates the liquidation price of a Trove from
the Minimum Collateral Ratio (MCR), the collateral and debt of the Trove as:

function _findPriceBelowMCR(
 uint256 _coll,
 uint256 _debt,
 uint _mcr
) internal pure returns (uint256 price) {
 // Finds an exact price at which CR becomes MCR. Liquidation does not happen in
 // the event of them being equal, hence we add 1 to it to find closest liquidation price
 price = ((_coll * DECIMAL_PRECISION) / _debt / _mcr) + 1;
}

Note that _coll and _debt have 18 decimals precision, so the result of the intermediary division _coll *
DECIMAL_PRECISION / _debt is a number with 18 decimals. The mcr has 18 decimals, so the result of
the division _coll * DECIMAL_PRECISION / _debt / _mcr has 0 decimals instead of the expected 18.

Code corrected:

The codebase now multiplies the intermediary result by 1e18 before dividing by _mcr, so the result has
18 decimals.

6.26 Locking of Troves Is Longer Than Specified
Correctness Medium Version 2 Specification Changed

CS-HOG-051

Version 2

The contract BorrowerOperations implements a new check _checkAndSetUpdateBlock() in
 to restrict operations that modify a trove more than once in a single block. The specification of

the function is:

// HedgehogUpdates: new private function, that checks if there was a transaction
 with a trove in the current block

However, the function uses block.number to check if a trove is being modified more than once in a
block:

function _checkAndSetUpdateBlock(address _borrower) private {
 if (troveManager.getTroveUpdateBlock(_borrower) == block.number) {
 revert TroveAdjustedThisBlock();
 }
 ...
}

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

We would like to highlight that block.number in Arbitrum returns the estimated block in Layer-1
(Ethereum mainnet). Thus, the check above prevents transactions that modify a trove for more than one
block.

Specification changed:

Version 4Contract BorrowerOperations is no longer in scope in . A new contract
BorrowerOperationsArb has been added that will be deployed in Arbitrum and resolves the issue
above by using arbsys.arbBlockNumber() to get block numbers.

6.27 Change of Issuance Curve Has Unexpected
Side Effects
Design Medium Version 1 Code Corrected

CS-HOG-014

The issuance computed by CommunityIssuance.issueHOG() is the difference between the current
point on the issuance curve and the point at the last update (totalHOGIssued).

uint latestTotalHOGIssued = HOGSupplyCap
 .mul(_getCumulativeIssuanceFraction())
 .div(DECIMAL_PRECISION);
uint issuance = latestTotalHOGIssued.sub(totalHOGIssued);

totalHOGIssued = latestTotalHOGIssued;

An address with the DISTRIBUTION_SETTER role can modify the issuance curve by changing their
convergence limit (HOGSupplyCap) or their rate of convergence (ISSUANCE_FACTOR) with the
function CommunityIssuance.setHOGSupplyCap() or
CommunityIssuance.setISSUANCE_FACTOR(), respectively. There is no function to modify the point
of the last update (totalHogIssued).

If the value of the new curve is lower than the previous point, then the subtraction (latestTotalHOGIssued
- totalHOGIssued) will underflow. Although only whitelisted accounts can set these parameters,
misconfigurations are possible. If such misconfigurations happen, they cause all liquidations and calls to
provide or withdraw stake from the stability pool to revert.

If the new curve is higher than the old curve at the current point in time, all additional issuance will be
consumed in the next call to issueHog.

Code corrected:

The CommunityIssuance.issueHOG() function now returns 0 instead of causing an underflow when
the new curve is lower than before. This prevents failures in liquidations and staking:

uint issuance = latestTotalHOGIssued > totalHOGIssued
 ? latestTotalHOGIssued.sub(totalHOGIssued)
 : 0;

A new function, CommunityIssuance.setTotalHOGIssued() has been added, to modify the
previous point on the curve (totalHOGIssued).

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

Note that when increasing the issuance, the function setTotalHogIssued() must be called called first (or
calls to setHOGSupplyCap, setISSUANCE_FACTOR, and setTotalHogIssued are batched). Otherwise,
an issueHog() call might use all the extra issuance before setTotalHogIssued() is called.

6.28 Chosen Values for Gas Compensation and
Minimum Debt Are Low
Design Medium Version 1 Code Corrected

CS-HOG-015

The parameters for gas compensation and minimum net debt are set in the file deployConfig.ts:

export const deployConfig: DeploymentConfig = {
 ...
 gasComp: "100000",
 minNetDebt: "100000",
 ...
};

Both gasComp and minNetDebt represent amounts in the debt token, BaseFeeLMAToken, which uses
6 decimals. Therefore, gas compensation and minimum net debt are set to low amounts, corresponding
to 0.1 BaseFeeLMA.

Assuming a liquidation consumes 500,000 gas, the gas price on Arbitrum is about 1/5 of the base fee,
and 1e6 BaseFeeLMAToken are worth 1 base fee (6 decimals), the cost of the liquidation expressed in
BaseFeeLMAToken is:

gasCostInBaseFeeTokens = (500.000/5) * 1e6 = 100.000 * 1e6
A low minimum net debt enables gas griefing attacks by lowering the costs to create a large number of
troves. Similarly, the gas compensation is very low, and it makes liquidations less attractive, hence
increasing the risks of unhealthy troves. Troves with minimum net debt are not worth liquidating as the
reward is lower than the gas costs of executing a liquidation.

Version 2 :

The codebase had been updated to use 18 decimals for the BaseFeeLMA token. Thus, the constant
variables set in the contract HedgehogBase represent very small amounts (less than 1 BaseFeeLMA
token):

// HEDGEHOG UPDATES: Decreased to 100k wei
// Amount of BaseFeeLMA to be locked in gas pool on opening troves
uint public constant BaseFeeLMA_GAS_COMPENSATION = 100000;

// HEDGEHOG UPDATES: Decreased to 350000000 BFE
// Minimum amount of net BaseFeeLMA debt a trove must have
uint public constant MIN_NET_DEBT = 350000000;

Code corrected:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

Version 3In the BaseFeeLMA_GAS_COMPENSATION has been updated to 100.000 * 1e18. Hedgehog
considers this amount as fair compensation although it might not cover always the gas costs of
liquidations:

The gas compensation amount is based on the ratio between L2 and Ethereum gas price.
The Hedgehog liquidation transaction consumes app. 417-673K of L2 gas. The L2/L1 gas
price ratio range was estimated between 1:8 and 1:3 (Optimism L2, September 2023).
The present peak values (March 16, 2024) are app. 1:3.75. The compensated value is
then 52K-84K (1:8 ratio) or 139K-224K (1:3 ratio) L1 gas units, equivalent to the same
number of BaseFee token fractions. The 100K value is taken as a moderate rounded value
of the required compensation, given that the price ratio is often much lower than the
estimated peaks

The MIN_NET_DEBT has been changed to 50.000.000 * 1e18 or around 20.000 USD at a base fee of
100 Gwei and 4000 USD/ETH (50 mio * 100e-9 * 4000 = 20.000 USD). The minimum debt for a trove
scales linearly with the base fee. Hence, a decrease of base fee at 1 Gwei, results in a minimum debt of
200 USD (50 mio * 100e-9 * 4000 = 200 USD). Therefore, the griefing attack that inject troves in the
linked list to make user transactions such as openTrove() or redeemCollateral() revert, are more
likely when base fee is low.

Version 4In the BaseFeeLMA_GAS_COMPENSATION has been increased to 300.000 * 1e18 and the
MIN_NET_DEBT has been increased to 100.000.000 * 1e18.

6.29 Closing Troves Requires Borrowers Having
Larger Balance Than Needed
Correctness Medium Version 1 Code Corrected

CS-HOG-016

When opening a new trove, its debt is set to the gross amount of debt which includes the borrowing fee
and the gas compensation:

function openTrove(..., _BaseFeeLMAAmount, ...) {
 ...
 vars.netDebt = _BaseFeeLMAAmount;
 ...
 vars.compositeDebt = vars.netDebt;
 ...
 contractsCache.troveManager.increaseTroveDebt(msg.sender, vars.compositeDebt);
 ...
}

The gas compensation is held by the gas pool address and should be refunded to users when closing a
trove.

However, the function closeTrove implements a check that requires borrowers to have enough
balance to repay the whole debt (including gas compensation):

uint debt = troveManagerCached.getTroveDebt(msg.sender);
_requireSufficientBaseFeeLMABalance(
 baseFeeLMATokenCached,
 msg.sender,
 debt // Hedgehog Updates: do not deduct gas comp anymore
);

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

Code corrected:

The function closeTrove now deducts the gas compensation from the debt before checking the user's
balance:

uint debt = troveManagerCached.getTroveDebt(msg.sender);
_requireSufficientBaseFeeLMABalance(
 baseFeeLMATokenCached,
 msg.sender,
 debt.sub(BaseFeeLMA_GAS_COMPENSATION)
);

6.30 Distribution Functions in FeesRouter Use
Wrong Configs
Design Medium Version 1 Code Corrected

CS-HOG-017

Functions distributeDebtFee() and distributeCollFee() in the contracts FeesRouter use a
wrong formula when retrieving a fee configuration:

FeeConfig memory config = FeeConfigs[(((_fee * 100) / _debt) % 5) * 5];

The intermediate result ((_fee * 100) / _debt) % 5) in the formula above returns a value
between 0 and 4. Multiplying this intermediate result with 5 can produce five possibilities for the fee
percentages: 0, 5, 10, 15, 20.

This behavior is counter intuitive as for a fee percentage of 6%, 11% or 16%, the config corresponding to
the 5% range is used. While for a fee percentage of 7%, 12%, and 17%, the config for 10% is used.

Code corrected:

Version 2A new internal function _getPctRange has been added in that computes the closest multiplier
of 5 given an amount of debt and the respective fee.

6.31 Function _getUSDValue Computes Wrong
Value
Correctness Medium Version 1 Specification Changed

CS-HOG-018

The function BorrowerOperations._getUSDValue uses the following formula to compute the return
value:

function _getUSDValue(uint _coll, uint _price) internal pure returns (uint) {
 uint usdValue = _price.mul(_coll).div(DECIMAL_PRECISION);

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

 return usdValue;
}

Collateral amount _coll is in WStETH while _price is for the pair BaseFeeLMA:ETH, hence the
returned value does not represent the value of collateral in USD. This function is unused in the current
version of the codebase.

Specification changed:

The function BorrowerOperations._getUSDValue() function has been deleted from the codebase.

6.32 Gas Compensation Not Accounted on
Redemption Hints
Correctness Medium Version 1 Code Corrected

CS-HOG-019

The function HintHelpers.getRedemptionHints() does not account correctly for the gas
compensation linked to a trove. The net debt of trove is computed as follows:

uint netBaseFeeLMADebt = _getNetDebt(troveManager.getTroveDebt(currentTroveuser))
 .add(troveManager.getPendingBaseFeeLMADebtReward(currentTroveuser));

Differently from Liquity, function _getNetDebt() does not subtract the gas compensation, hence it
remains included in the amount netBaseFeeLMADebt.

In case the trove should be closed during the redemption, the gas compensation is paid by the redeemer
instead of refunded from the gas pool:

if (netBaseFeeLMADebt > remainingBaseFeeLMA) {
 ...
} else {
 remainingBaseFeeLMA = remainingBaseFeeLMA.sub(
 netBaseFeeLMADebt
);
}

Code corrected:

Version 2The function HedgehogBase._getNetDebt() has been revised in to subtract the gas
compensation from a debt.

6.33 Inconsistent Definition of Redemption Share
Correctness Medium Version 1 Code Corrected

CS-HOG-020

The TroveManager contract in the codebase defines the redemption share inconsistently across two of
its functions.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

In the function TroveManager._calcRedemptionRate(), the redemption share is defined as the
division of redeemed collateral by the sum of collateral in the active pool and the default pool.

redemptionShare = RedemptionEth/(CollateralinActivePool + CollateralinDefaultPool)
However, in the function TroveManager._updateRedemptionBaseRateFromRedemption(), the
redemption share is calculated differently. Here, it is defined as the proportion of the redeemed collateral
to the collateral in the active pool only:

redemptionShare = RedemptionEth/CollateralinActivePool

The NatSpec comments above the function TroveManager._calcRedemptionRate() imply the
identical alternate formula that ignores the collateral in the default pool.

This inconsistency in the redemption share definition could lead to external parties misunderstanding the
redemption mechanism and the calculation of the redemption rate. It is recommended to harmonize the
definition of the redemption share in both functions and to update the NatSpec comments accordingly.

Code corrected:

The function TroveManager._updateRedemptionBaseRateFromRedemption() was updated to
calculate the redemption share as the division of the redeemed collateral by the sum of collateral in the
active pool and the default pool.

redemptionShare = RedemptionEth/(CollateralinActivePool + CollateralinDefaultPool)
The NatSpec comments above the function were also updated to reflect the corrected formula.

The function TroveManager._calcRedemptionRate() no longer adds the redemption share to the
redemption rates, since the share would be double counted (see: Redemption rate double counts the
redemption share).

6.34 Mismatch of NICR Specifications With
Implementation
Correctness Medium Version 1 Code Corrected

CS-HOG-022

The NatSpec description of the constant NICR_PRECISION in library LiquityMath states:

This value of 1e20 is chosen for safety: the NICR will only overflow for numerator > ~1e39 WStETH

The implementation of function _computeNominalCR computes the nominal individual collateralization
ratio as follows:

return _coll.mul(NICR_PRECISION).div(_debt);

The amount _coll is in 18 decimals (WStETH), while _debt is in 6 decimals (BaseFeeLMA), hence the
result is in 30 decimals. This conflicts with the specification of NICR_PRECISION.

Code corrected:

The debt token (BaseFeeLMA) has been changed to use 18 decimals. Therefore _debt and the result of
the multiplication are in 18 decimals places. This is in line with the specification of NICR_PRECISION.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

6.35 Price Feed Compares Timestamp to
Blocknumber
Correctness Medium Version 1 Code Corrected

CS-HOG-024

The Function PriceFeed._backupOracleIsBroken() compares the block.number of the
response to the current block.timestamp to determine if the backup oracle is broken.

// Check for an invalid timeStamp that is 0, or in the future
if (
 _response.blockNumber == 0 ||
 _response.blockNumber > block.timestamp
) {
 return true;
}
// Check for zero price
if (_response.answer == 0) {
 return true;
}

return false;

As the block.timestamp is always larger than the block.number (incremented every 12 seconds),
the function returns false for block numbers in the future. Note that block.number returns an estimate
of the L1 block number on Arbitrum.

Code corrected:

The function PriceFeed._backupOracleIsBroken() has been updated to compare the
response.blockNumber to the current block.number instead of the block.timestamp.

6.36 PriceFeed Does Not Check if Main Oracle
Recovers
Design Medium Version 1 Code Corrected

CS-HOG-025

The function PriceFeed.fetchPrice() does not check if the main oracle has recovered when prices
are retrieved from the backup oracle (Case 2):

// --- CASE 2: The system fetched last price from Backup ---
if (status == Status.usingBackupMainUntrusted) {
 if (
 _priceChangeAboveMax(
 backupOracleResponse,
 prevBackupOracleResponse,
 decimals
)
) {
 _changeStatus(Status.bothOraclesUntrusted);
 return lastGoodPrice;

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 48

https://chainsecurity.com

 }
 ...
}

In case the main oracle recovers and returns a similar price to backup, but the backup oracle reports two
prices that deviate more than allowed, the code marks both oracles as untrusted and returns the last
stored price.

Code corrected:

The function fetchPrice() has been revised to first check if the main oracle has recovered (Case 2)
by performing later the checks in the code snippet above.

6.37 Redemption Share Is Rounded to Zero
Design Medium Version 1 Specification Changed

CS-HOG-026

The redemption rate is calculated based on the share of collateral that is redeemed:

RedRate = RedFloor + RedBaseRate + RedemptionEth/Collateral

In the function TroveManager._calcRedemptionRate(), the share of collateral is rounded to zero in
the intermediate calculation
_redemptionColl.div(activePool.getWStETH() + defaultPool.getWStETH()).

Both the numerator and denominator have 18 decimals and the denominator is always larger than
numerator. As a result of the rounding error, the redemption rate does not increase when large amounts
of collateral are redeemed, and large amounts of Troves can be redeemed against during base fee
spikes.

Specification changed:

The function TroveManager._calcRedemptionRate() no longer adds the redemption share to the
redemption rate (see: Redemption rate double counts the redemption share).

6.38 Unusual Decimals Used for Values in
StabilityPool
Correctness Medium Version 1 Code Corrected

CS-HOG-028

The debt token BaseFeeLMA in Hedgehog uses 6 decimals, which has side effects in the calculations in
the contract StabilityPool. Several state variables store values in unusual decimals that deviate from
Liquity and are not properly documented.

Although we did not identify concrete issues related to decimals in the formulas used in StabilityPool, the
specifications should be extended to clarify the intended decimals for variables.

For instance, the values stored in mappings epochToScaleToSum and epochToScaleToG use 48
decimals, while memory variables HOGPerUnitStaked, WStETHGainPerUnitStaked and
BaseFeeLMALossPerUnitStaked use 30 decimals.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 49

https://chainsecurity.com

Code corrected:

The debt token BaseFeeLMA has been revised to use 18 decimals of precision. This removes the side
effects, and the state variables are stored in the same decimal numbers as the specification.

6.39 Wrong Value Used to Calculate the
Borrowing Rate With Decay
Correctness Medium Version 1 Code Corrected

CS-HOG-029

The function TroveManager.getBorrowingRateWithDecay() incorrectly calculates the borrowing
rate of a Trove. It uses the decayed redemption base rate instead of the decayed borrowing base rate.

function getBorrowingRateWithDecay(
 uint _issuedBaseFeeLMA
) public view returns (uint) {
 return
 _calcBorrowingRate(
 _calcDecayedRedemptionBaseRate(),
 _issuedBaseFeeLMA
);
}

While this function is not directly used by any contract, it can be utilized by front ends to calculate the
maximum fee a user is willing to pay for borrowing baseFeeLMA tokens.

If the value returned by _calcDecayedRedemptionBaseRate() is lower than the value returned by
_calcDecayedBorrowingBaseRate(), the expected borrowing rate will be lower than possible. This could
lead to a user selecting a value for the maximum fee that is too low, causing borrowing operations to
revert.

Code corrected:

The function getBorrowingRateWithDecay() has been revised to use the decaying borrowing base
rate:

return _calcBorrowingRate(_calcDecayedBorrowBaseRate(), _issuedBaseFeeLMA);

6.40 Collateralization Ratio Is Rounded Down
Design Low Version 6 Code Corrected

CS-HOG-084

The function LiquityMath._computeCR() rounds down the result of the intermediate calculation,
since it divides the collateral by the debt before multiplying with DECIMAL_PRECISION again.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 50

https://chainsecurity.com

function _computeCR(
 uint _coll,
 uint _debt,
 uint _price
) internal pure returns (uint) {
 if (_debt > 0) {
 uint newCollRatio = (((_coll * DECIMAL_PRECISION) / _debt) *
 DECIMAL_PRECISION) / _price;

 return newCollRatio;
 }
 // Return the maximal value for uint256 if the Trove has a debt of 0. Represents "infinite" CR.
 else {
 // if (_debt == 0)
 return 2 ** 256 - 1;
 }
}

As a result _computeCR calculates a result that is too small. The relative error is small based on current
base fees. However theoretically, the error is such that a trove could be liquidated if the correct CR is
1500000000000000001, because it is incorrectly computed as 1499999999500000000.

Code corrected:

Version 7In , the precision of function computeCR has been increased by multiplying the collateral with
DECIMAL_PRECISION**2 before dividing by the debt.

Note that the intermediate computation can theoretically overflow, but for that to happen
_coll > 10**77 / 10**36 = 10**41 (10**77 is roughly the limit of uint256). A collateral value of
10**41 would imply that the system holds 10**23 WStETH. However, currently there are only roughly
10**8 ETH in existence.

6.41 Adversary Can Slow the Recovery of
Withdrawal Limit
Security Low Version 5 Code Corrected

CS-HOG-074

Once the withdrawal limit is small, an adversary can slow down its recovery by simply withdrawing a
single wei of collateral in each block. Hence, the collateral requirement for the attacker is negligible. The
attacker pays for transaction costs of the withdrawals. Keep in mind that transaction costs are fairly low
on Base chain. Below we have simulated an example where the unusedWithdrawalLimit drops to 0
and the ActivePool has a balance of 20,000 WstETH:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 51

https://chainsecurity.com

As you can see, the adversary can roughly half the recovery of the withdrawal limit over the current
recovery window of 12 hours compared to regular execution.

Code corrected:

Version 6The withdrawal limits have been removed in . Hence, the issue is resolved.

6.42 Outdated Specification for
_handleWithdrawalLimit
Correctness Low Version 5 Code Corrected

CS-HOG-076

The comment before the function _handleWithdrawalLimit inside the BorrowerOperations is
outdated. In particular, it mentions specification items like a Condition Check
When Collateral is Added to the System. These items do not correspond to the current
specification.

Code corrected:

Version 6The withdrawal limit has been removed in . Hence, the issue is resolved.

6.43 Precision Issue in Withdrawal Limit
Calculation
Correctness Low Version 5 Code Corrected

CS-HOG-077

To calculate the withdrawal limit the code is using the following calculation:

uint256 DENOMINATOR = 100000;

// First, we calculate how much time has passed since the last withdrawal

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 52

https://chainsecurity.com

uint256 minutesPassed = block.timestamp - _lastWithdrawTimestamp;

// We calculate the percentage based on the time diff between last withdrawal and current moment
uint256 percentageToGet = minutesPassed > _expandDuration
 ? DENOMINATOR
 : (minutesPassed * DENOMINATOR) / _expandDuration;

additionFromNewColl =
 ((totalCollBasedLimit - _unusedWithdrawalLimit) *
 percentageToGet) /
 DENOMINATOR;

Version 5Note that in _expandDuration is 720 minutes and hence has a value of 43200. The issue is
that the percentageToGet can have a fairly big rounding error. In case only two seconds have passed
since the last calculation (which is the current block interval of Base chain), then the percentageToGet
will be 4. This is due to the chosen precision, when the correct value would have been roughly 4.63.
Hence, the percentageToGet is off by roughly 14%. Therefore, also the subsequent calculation of
additionFromNewColl will be off by roughly 14% and the withdrawal limit will recover slower than it
was intended.

Code corrected:

Version 6The withdrawal limits have been removed in . Hence, the issue is resolved.

6.44 Unclear Specification Regarding Oracle
Decimals
Design Low Version 5 Specification Changed

CS-HOG-078

The BaseFeeOracle serves to inform the system about mainnet BaseFee values. Its documentation
says:

* A custom oracle that's used to feed real world (LogMA50(BaseFeePerGas) * WstETH / ETH ratio)
* value to the system onchain

...

int256 answer; // LogMA50(BaseFeePerGas) * WstETH / ETH ratio in wei

...

uint8 public constant decimals = 18;

Reading this suggests that if the LogMA50(BaseFeePerGas) were 20 GigaWei and the
WstETH / ETH ratio would be 1.1, then the feed would have a value of 22 * 10**9 * 10**18.
This would report the logarithmic BaseFee with a precision of 18 decimals.

However, according to our understanding, the feed would have the value 22 * 10**9. Hence, the
specification should be updated to avoid incorrect integrations.

Specification changed:

The comment has been clarified.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 53

https://chainsecurity.com

6.45 Withdrawal Limit Function Has
Discontinuities
Design Low Version 5 Code Corrected

CS-HOG-079

Version 5The withdrawal limits have been corrected to be more smooth in . However, the withdrawal limit
function still has some discontinuities close to the limit:

1. If the balance is below the threshold (currently 10 ETH), full withdrawals are possible, regardless of
the unusedWithdrawalLimit.

2. If the activePool balance is slightly above the threshold, weird behavior can happen: If the
activePool holds 12 ETH and the unusedWithdrawalLimit is 0, then the withdrawal of 1 ETH will be
blocked, but the withdrawal of 2 ETH will be allowed.

3. If the activePool balance is between threshold and threshold * 2, then the activePool can be
emptied in two steps irrespective of the value of unusedWithdrawalLimit. Concretely, if the balance
is 20 ETH and the unusedWithdrawalLimit is 0, it is allowed to withdraw 10 ETH and directly 10
ETH again.

Code corrected:

Version 6The withdrawal limits have been removed in . Hence, this issue is resolved.

6.46 Magic Value for Expand Duration
Correctness Low Version 4 Code Corrected

CS-HOG-067

The contract BorrowerOperationsArb uses magic value 720 minutes in
_updateWithdrawlLimitFromCollIncrease and setAddresses instead of referring to the
constant EXPAND_DURATION of the same value. This makes the code harder to read and maintain.

Code corrected:

Version 5

The magic value of 720 minutes has been replaced by the constant EXPAND_DURATION of the same
value in .

6.47 Missing Event When Changing Withdrawal
Limit
Correctness Low Version 4 Code Corrected

CS-HOG-068

In contract BorrowerOperationsArb the functions _handleWithdrawlLimit() and
_updateWithdrawlLimitFromCollIncrease() do not emit an event when updating the withdrawal
limit or the time of the last withdrawal limit update.

This can make it hard for external users to know the current withdrawal limit or its change over time.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 54

https://chainsecurity.com

Code corrected:

Version 5In , the event WithdrawalLimitUpdated has been added. This event is emitted whenever the
withdrawal limit is updated by the functions _handleWithdrawalLimit() and _activePoolAddColl().

6.48 Withdrawal Threshold Can Be Circumvented
by Splitting Transactions
Design Low Version 4 Code Corrected

CS-HOG-069

Code comments in the function BorrowerOperationsArb._handleWithdrawalLimit() state that
a single transaction should only be able to withdraw 80% of the withdrawable amount. However, a user
can bypass this restriction by splitting the withdrawal of collateral across multiple Troves. By withdrawing
80% of the remaining withdrawable amount in each transaction, a user can effectively withdraw nearly all
available collateral in the system. For example, with just 4 Troves, a user can withdraw 1 - (1 - 0.8)^4 =
99.84% of the limit.

Code corrected:

Version 6The withdrawal limits have been removed in . Hence, the issue is resolved.

6.49 Unnecessary Limitation When Opening a
Trove
Correctness Low Version 2 Code Corrected

CS-HOG-053

The function BorrowerOperations.openTrove() enforces the check:

if (_BaseFeeLMAAmount <= vars.BaseFeeLMAFee + BaseFeeLMA_GAS_COMPENSATION) {
 revert("BO: Fee exceeds gain");
}

Version 2In , the gas compensation is not included in _BaseFeeLMAAmount, hence the check above
sets an unnecessary limit.

Code corrected:

The check has been changed to enforce that

if (_BaseFeeLMAAmount <= vars.BaseFeeLMAFee) {
 revert("BO: Fee exceeds gain");
}

Note that BaseFeeLMAFee can be at most _BaseFeeLMAAmount, since it is calculated in the previous
step as:

BaseFeeLMAFee = BaseFeeLMAAmount * maxFeePercentage

and maxFeePercentage can be at most 100%.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 55

https://chainsecurity.com

6.50 Event BorrowBaseRateUpdated Is Emitted
Twice
Correctness Low Version 1 Code Corrected

CS-HOG-030

When an asset is borrowed, the BorrowBaseRateUpdated event is triggered twice.

First, it is emitted in TroveManager.decayBaseRateFromBorrowing() and the decayed old base
rate is logged. Second, it is emitted in TroveManager.updateBaseRateFromBorrowing() to log the
updated borrow base rate.

Since the deprecated rate is logged first, external integrators might consume outdated data.

Code corrected:

The BorrowBaseRateUpdated is now emitted only once in
TroveManager.updateBaseRateFromBorrowing().

6.51 Excess Fee Distribution in FeesRouter
Correctness Low Version 1 Code Corrected

CS-HOG-031

The function FeesRouter.distributeDebtFee() divides the fee between three addresses and
settles any rounding error with address A.

function distributeDebtFee(
 ...
 uint256 totalAmounts = amountA + amountB + amountC;
 if (totalAmounts < _fee) {
 ...
 } else if (totalAmounts > _fee) {
 amountA = amountA + totalAmounts - _fee;
 }

However, if the total amount of distributed fees is higher than the generated fee, the rounding error will be
added to the amount sent to address A instead of being deducted from it. This doubles the rounding
error.

The same problem exists in the function FeesRouter.distributeCollFee().

Code corrected:

Both functions distributeDebtFee() and distributeCollFee() have been revised to settle the
error caused from rounding down in _calculateAmount() with address A:

if (totalAmounts != _fee) {
 amountA = amountA + _fee - totalAmounts;
}

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 56

https://chainsecurity.com

6.52 Function _findPriceBelowMCR Can Be
Improved
Design Low Version 1 Specification Changed

CS-HOG-032

The function LiquityMath._findPriceBelowMCR() lacks clear specifications and is called only from
external functions. _findPriceBelowMCR() takes as input a collateral amount _coll, debt amount
_debt, a starting price _startPrice, and a collateralization ratio _mcr. The function uses an iterative
method to find the target price such that the CR of a position with collateral _coll and debt _debt
matches the input _mcr.

The function could be improved if using an analytical solution instead of the iterative one.

Specification changed:

The function now uses an analytical solution to find the target price.

6.53 Immutable Parameters Should Be Constants
Correctness Low Version 1 Code Corrected

CS-HOG-033

The accounting of the core contracts works only if the system-wide parameters are equal among all
contracts. Furthermore, parameters such as minimum collateralization ratio (MCR) or critical
collateralization ratio (CCR) are predefined and should not change on deployment. Therefore, the state
variables BaseFeeLMA_GAS_COMPENSATION, MIN_NET_DEBT and CCR in the contract HedgehogBase
should be constants.

Code corrected:

The listed variables are now declared as constants in the contract HedgehogBase.

6.54 Incomplete Error Message
Design Low Version 1 Code Corrected

CS-HOG-034

The function _requireCallerIsBOorTroveMorSPorFRoute() in ActivePool does not include the
fee router in the error message:

ActivePool: Caller is neither BorrowerOperations nor TroveManager nor StabilityPool

Code corrected:

The error message has been updated to include the fee router:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 57

https://chainsecurity.com

ActivePool: Caller is neither BO nor TM nor FRouter

6.55 Incorrect Validation of Repayments
Correctness Low Version 1 Code Corrected

CS-HOG-036

The internal function _requireValidBaseFeeLMARepayment in BorrowerOperations should limit
debt repayments in a trove to its current debt minus gas compensation. However, the function does not
consider the gas compensation, hence permitting larger repayments:

require(
 _debtRepayment <= _currentDebt,
 "BorrowerOps: Amount repaid must not be larger than the Trove's debt"
);

Note that if the gas compensation is larger than minimum net debt, the consequences of this issue are
severe and could break redemptions. An attacker can lower their debt below
BaseFeeLMA_GAS_COMPENSATION and a deduction of the gas compensation from user debt will
underflow in TroveManager._redeemCollateralFromTrove().

Code corrected:

The gas compensation is now removed from the debt repayment:

require(
 _debtRepayment <= _currentDebt.sub(BaseFeeLMA_GAS_COMPENSATION),
 "BorrowerOps: Amount repaid must not be larger than the Trove's debt"
);

6.56 Initial Stake Rounds Down to Zero
Design Low Version 1 Code Corrected

CS-HOG-037

The function StabilityPool._getCompoundedStakeFromSnapshots() calculates the
compounded stake of a trove based on an initial stake and a snapshot. The function implements an
if-condition to check if the compounded stake is less than a billionth of the original stake and should
return 0 if it is the case:

if (compoundedStake < initialStake.div(1e9)) {
 return 0;
}

However, given that initialStake uses 6 decimals (BaseFeeLMA), the result of
initialStake.div(1e9) rounds down to zero for stakes smaller than 1_000 * 10**6.

Code corrected:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 58

https://chainsecurity.com

Version 2BaseFeeLMA token uses 18 decimals in , which resolves the issue described above.

6.57 Missing Event When Increasing Balance
Correctness Low Version 1 Code Corrected

CS-HOG-039

The function StabilityPool._increaseBalance() does not emit the event
StabilityPoolWStETHBalanceUpdated when updating the wstETH balance. This makes it hard for
integrators and dApps to track the wstETH balance of the Stability Pool.

Code corrected:

The function _increaseBalance() has been updated to emit the event.

6.58 Missing Sanity Checks
Design Low Version 1 Code Corrected

CS-HOG-040

• The function PriceFeed._backupOracleIsBroken() does not check that roundId is non-zero
and price is positive, which is different from the checks performed for the main oracle.

• The function FeesRouter.setAddresses() does not check for non-zero addresses for
parameters _borrowersOp and _troveManager.

Version 4In :

• The function PriceFeedArb._backupOracleIsBroken() does check that price is non-zero, but
not that it is positive.

Version 5In :

The contract PriceFeedArb has been removed from scope.

Code corrected:

Version 3The missing sanity checks have been added to the contracts PriceFeed and FeesRouter in .

6.59 Misleading Variable Name in
BorrowerOperationsArb
Informational Version 4 Code Corrected

CS-HOG-070

The temporary variable singleTxWithdrawable in function
BorrowerOperationsArb._handleWithdrawlLimit() has a misleading name since it represents
the amount of collateral in a single call and not transaction. Multiple withdrawal requests removing the
collateral from multiple troves can be batched in a single transaction.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 59

https://chainsecurity.com

Code corrected:

The relevant function has been removed. Hence, this finding is resolved.

6.60 Misleading Variable Name in LiquityMath
Informational Version 4 Code Corrected

CS-HOG-071

The local variable minutesPassed in _checkWithdrawlLimit is denominated in seconds and not
minutes as the name suggests.

Code corrected:

The relevant function has been removed. Hence, the issue is resolved.

6.61 Withdrawal Limit Does Not Take Collateral
From Redistributions Into Account
Informational Version 4 Code Corrected

CS-HOG-081

Withdrawal limits are calculated based on the collateral locked in the system. However, only the collateral
in the active pool is considered. Collateral from liquidated troves that has been redistributed to other
troves is not included. Instead, this redistributed collateral is locked in the default pool.

When users adjust their trove, they realize their pending rewards, moving collateral from the default pool
to the active pool. However, this does not immediately increase their withdrawal limit; instead, the limit
gradually increases through the recovery mechanism.

Code corrected:

This finding is resolved, as withdrawal limits have been removed.

6.62 Remaining ToDos
Informational Version 3 Code Corrected

CS-HOG-058

The following ToDo comment is present in contracts TroveManager and TroveManagerArb:

* HEDGEHOG UPDATES:
* 1) Now passing _calcDecayedBorrowBaseRate instead of _calcDecayedBaseRate
 function to calculate the decayed borrowBaseRate
* TODO: Write test

Code Corrected:

The TODO has been removed.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 60

https://chainsecurity.com

6.63 Gas Optimizations
Informational Version 1 Code Corrected

CS-HOG-042

1. Function HOGToken._transfer() redundantly checks that recipient is not address zero,
which is already checked in external functions transfer() and transferFrom().

2. The state variable feesRouter in contract BaseFeeLMAToken can be declared as immutable.

3. The function BaseFeeOracle.feedBaseFeeValue() could save a SLOAD operation by setting
latestRound to round.

4. The check
_BaseFeeLMAAmount <= vars.BaseFeeLMAFee + BaseFeeLMA_GAS_COMPENSATION in
BorrowOperations.openTrove() can be moved up to fail early.

5. Function _requireCallerIsActivePool() in the contract DefaultPool remains unused in
the codebase.

6. The state variable feeCount in the contract FeesRouter is unused.

7. Several contracts inherit SafeMath library although solidity version 0.8.19 is used.

8. Function StabilityPool.withdrawWStETHGainToTrove() triggers redundant execution of
getDepositorWStETHGain() in its internal function calls.

9. The state variable ISSUANCE_FACTOR is set upon declaration and then written again in the
constructor of CommunityIssuance.

10. Event BaseFeeLMATokenBalanceUpdated in the contract BaseFeeLMAToken remains unused
in the codebase.

11. The constant BETA in the contract TroveManager remains unused in the codebase.

12. The constant ONE_YEAR_IN_SECONDS in the contract HOGToken remains unused.

13. The immutable BOOTSTRAP_PERIOD in the contract TroveManager can be defined as constant.

Version 3 :

14. Contract StabilityPool inherit LiquitySafeMath128 library although solidity version 0.8.19
is used.

Version 4 :

15. Function BorrowOperationsArb._adjustTrove() could use the boolean
vars.isCollIncrease to check if collateral has been withdrawn.

16. Function BorrowOperationsArb._updateWithdrawlLimitFromCollIncrease() could
use the value of newColl to calculate newLimit.

17. The local variable DENOMINATOR in _checkWithdrawlLimit could be defined as constant.

18. Function BorrowerOperationsArb._handleWithdrawlLimit() calls redundantly
getWStETH() in the active pool.

Code corrected:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 61

https://chainsecurity.com

The optimizations were implemented.

6.64 Incorrect Interfaces
Informational Version 1 Code Corrected

CS-HOG-043

The function setAddresses defined in the interfaces ICommunityIssuance,
IBorrowerOperations, ICollSurplusPool, IStabilityPool, and ITroveManager accepts
fewer arguments than their respective implementations in CommunityIssuance,
BorrowerOperations, CollSurplusPool, StabilityPool, and TroveManager.

To maintain consistency between an interface and its corresponding contract, it is considered best
practice to have the contract inherit its interface.

Code corrected:

The listed contracts have been updated to inherit the respective interfaces.

6.65 Misleading Variable Name in BaseFeeOracle
Informational Version 1 Code Corrected

CS-HOG-044

The struct Response in contract BaseFeeOracle has a variable named currentChainBN. This
variable is set to block.number in function feedBaseFeeValue(). However, block.number in
Arbitrum returns the estimated Layer 1 block number, which is different from the block number in the
current chain as the name suggests.

A more detailed description of block.number can be found in the official docs.

Code corrected:

Version 3A new contract BaseFeeOracleArb was introduced in that stores Arbitrum block numbers in
the variable currentChainBN.

6.66 Misleading Variable Name in FeesRouter
Informational Version 1 Code Corrected

CS-HOG-045

The input argument _debt in function FeesRouter.distributeCollFee() is misleading. The input
argument represents a collateral amount.

Code corrected:

The variable has been renamed as _coll.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 62

https://web.archive.org/web/20240403115741/https://docs.arbitrum.io/build-decentralized-apps/arbitrum-vs-ethereum/block-numbers-and-time
https://chainsecurity.com

6.67 Misleading Variable Name in TroveManager
Informational Version 1 Code Corrected

CS-HOG-046

The temporary variable redeemedBaseFeeLMAFraction in function
TroveManager._updateRedemptionBaseRateFromRedemption() has a misleading name. The
variable redeemedBaseFeeLMAFraction is set to the fraction of collateral that is redeemed and not
the share of BaseFeeLMAToken redeemed.

Code corrected:

The variable has been renamed to redeemedCollFraction which is in line with the amount of the
token it stores.

6.68 Vulnerable Dependency
Informational Version 1 Code Corrected

CS-HOG-049

The Hedgehog's contract makes use of the OpenZeppelin Contracts Library (Version 4.9.3) with a known
vulnerability. More details can be found here: https://github.com/advisories/GHSA-9vx6-7xxf-x967

While the contracts in scope do not use the vulnerable function, it is considered best practice to upgrade
to a patched version of the library.

Code Corrected:

The dependency has been upgraded.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 63

https://github.com/advisories/GHSA-9vx6-7xxf-x967
https://chainsecurity.com

7 Informational
We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Incorrect Comments About Subsequent Base
Fee LMA Prices
Informational Version 5

CS-HOG-082

The MAX_PRICE_DEVIATION_PERCENTAGE_FROM_PREVIOUS_ROUND is currently set to 17.6% (176)
in the code. According to the code comments, the oracle triggers a price updates as soon as the price
deviates by more than 5%. Thus, Hedgehog expects that the price can change by 12.5% between two
updates leading to a maximum deviation of 17.6%.

// HEDGEHOG UPDATES: decreased to 176
// Maximum deviation allowed between two consecutive main oracle prices.
// Hedgehog oracles trigger updates when the price deviation exceeds 5%.
// Thus, the maximum possible deviation between rounds is 17.6%.
uint public constant MAX_PRICE_DEVIATION_PERCENTAGE_FROM_PREVIOUS_ROUND = 176;

Yet, if the Base Fee LMA token could increase by 12.5% in this scenario, then a threshold of 17.6%
would not be enough, since deviations are multiplied and not added together. Consider the case in which
the previous oracle price is 1 Gwei, and the current price is 1.0499 Gwei (just below the 5% threshold).
Then the new price would be:

P = 1.0499 * 1.1250 = 1.181 > 1.176
However, the scenario outlined is not possible, as the current specification of the LMA price of the base
fee would not allow it. The LMA base fee for block t is calculated as the logarithmic moving average of
the base fee over the last 50 blocks:

LMAt =

49
∑

i = 0
baseFeet − i × wi

49
∑

i = 0
wi

In this formula, the smallest weight is assigned to the most recent block, while the largest weight is
assigned to the oldest block within the window. Weights are defined as:

wt, i = ln(t + 1 − i)
So in the calculation of the Base Fee LMA at block 60, the base fee at block 60 has the smallest weight,
and the base fee at block 11 has the largest weight:

For the Base Fee LMA to increase by 12.5% from block 60 to block 61, the base fee would need to
increase by 12.5% in block 12 to block 61:

baseFeet + 1 = 1.125 × baseFeet =

n − 1
∑

i = 0
1.125 × baseFeet − i × wi

len − 1
∑

i = 0
wi

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 64

https://chainsecurity.com

Note that blocks 12 to 60 not only affect the Base Fee LMA at block 61, but also the LMA at previous
block 60. The primary differences between the LMA's at block 60 and block 61 are that block 11 is
included only in block 60's LMA, and block 61 is included only in block 61's LMA.

As illustrated in the graph above, the weight of any single block is small relative to the aggregate weights,
meaning a 2 observation difference is not enough to change the value significantly. Hence, the base fee
at block 60 itself would also need to be approximately 12.5% higher than the base fee at block 59. Such
an increase would violate the assumption that the price deviation remains within the 5% threshold, since
any deviation exceeding 5% would immediately trigger an oracle price update, resetting the deviation to
0%. Note that if the weighting scheme is altered - for instance, by a huge weight to the last block — the
contribution of a single block (i.e. block 11) could become large enough to allow the Base Fee LMA to
increase by 12.5% in this scenario.

7.2 Incorrect Error Message in Recovery Mode
Informational Version 5

CS-HOG-080

In Hedgehog's code recovery mode has no effect on the amount of borrowing fees charged. However,
function BorrowerOperations._requireValidMaxFeePercentage has a special case in recovery
mode allowing a user to set a max fee lower than the fee floor in recovery mode instead of reverting.

function _requireValidMaxFeePercentage(
 uint _maxFeePercentage,
 bool _isRecoveryMode
) internal pure {
 if (_isRecoveryMode) {
 require(
 _maxFeePercentage <= DECIMAL_PRECISION,
 "Max fee percentage must less than or equal to 100%"
);
 } else {
 require(

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 65

https://chainsecurity.com

 _maxFeePercentage >= BORROWING_FEE_FLOOR &&
 _maxFeePercentage <= DECIMAL_PRECISION,
 "Max fee percentage must be between 0.5% and 100%"
);
 }
}

Note that the execution will still revert later during the execution of _requireUserAcceptsFee, but the
error message will not be as informative as it could. The error message will not reflect whether the user
passed an incorrect fee value (below the fee floor) or if the user passed a fee value that is lower than the
current borrowing fee.

7.3 Base Fee Oracle Is Incompatible With
Chainlink Interface
Informational Version 1

CS-HOG-041

The contract BaseFeeOracle uses similar function names as Chainlink but it is not compatible with
Chainlink's interface. For instance, the declaration of function getRoundData() is:

function getRoundData(uint80 _roundId) public view returns (int256, uint256, uint256, uint80);

while the Chainlink's interface has the following:

function getRoundData(uint80 _roundId) external view returns (uint80, int256, uint256, uint256, uint80);

Version 2Updates in :

The function getRoundData() has been revised to follow the Chainlink interface, however the
decimals() are of type uint256 instead of uint8.

Version 5Updates in :

Technically, the function getRoundData() does not follow the Chainlink interface, however the
difference in the value ranges is unlikely to become an issue.

Integrators should be aware that not all functions like description and version are implemented and
getRoundData returns the (L1) block number and not the block timestamp.

7.4 Race Conditions When Opening Troves
Informational Version 1

CS-HOG-047

In Hedgehog's code, borrow base rates increase with each additional borrow before decaying back to
zero. If two transactions are pending, the first transaction executed will pay a lower fee than the second
transaction.

Similar to Liquity, a user can specify the value _maxFeePercentage to limit the percentage fee they are
willing to pay. However, racing other users is considerably easier in Hedgehog's protocol, as borrowing

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 66

https://chainsecurity.com

fees increase with each borrow, while they depend on redemptions in Liquity. Note that redemptions are
costly to perform under the wrong market conditions.

Furthermore, Hedgehog removed the 5% cap on borrowing fees from the codebase. It is important that
the changes are well documented so that users are aware of setting an acceptable value for
_maxFeePercentage to limit the fees paid.

7.5 Slightly Larger Collateral Reported
Informational Version 1

CS-HOG-048

Theoretically, the function HedgehogBase.getEntireSystemColl() can return 1 wei more than the
actual collateral due to ActivePool.getWStETH() returning 1 when the actual collateral is 0.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 67

https://chainsecurity.com

8 Notes
We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bridged Version of HOG Lacks Permit
Note Version 5

The HogToken in scope of the review is intended to be deployed on Ethereum Mainnet and then bridged
to Base Chain with the native bridge.

As a result of this bridging process, the HogToken on the Base Chain will be deployed via the
OptimismMintableERC20Factory bridge, making it an ERC20Bridged token. However, the
ERC20Bridged does not retain all the features of the original token—most notably, it does not include a
permit function.

This limitation may affect any operations or integrations that rely on gasless approvals via EIP-2612.

8.2 Dependency on EIP-1559 Specification
Note Version 5

The price of BaseFeeLMAToken is computed as the logarithmic moving average of the base fee over the
last 50 Ethereum mainnet blocks.

The Ethereum Base Fee mechanism is specified in EIP-1559.

If the base fee pricing mechanism is modified by a future Ethereum upgrade, it could potentially break
Hedgehog's protocol. We have identified at least two ways in which the protocol could fail:

1.The base fee is expected to change by a maximum of 12.5% per block. If this limit is exceeded, the
maximum deviation threshold of the price feed could get exceeded and the protocol would stop to
accepting new prices.

2.The EIP-1559 implicitly enforces a minimum base fee of 7 wei. If this limit would change in the future
and the base fee drops to a value as low as 1 wei, then any trove with a collateralization ratio below 10
could be rounded down by LiquityMath._computeCr(). Below we argue why the current limit is 7
wei:

Note that the base fee decreases when less gas is used than the target gas. So when no gas is used we
have gas_used_delta = parent_gas_target - 0 = parent_gas_target. The increase of the next base fee
can then be shown to be parent_base_fee_per_gas // BASE_FEE_MAX_CHANGE_DENOMINATOR (=
8):

base_fee_per_gas_delta = parent_base_fee_per_gas * gas_used_delta // parent_gas_target // BASE_FEE_MAX_CHANGE_DENOMINATOR

base_fee_per_gas_delta = parent_base_fee_per_gas * parent_gas_target // parent_gas_target // 8

base_fee_per_gas_delta = parent_base_fee_per_gas // 8

Now, if parent_base_fee_per_gas falls below 8 wei, then base_fee_per_gas_delta becomes
zero as the expression rounds down to zero. Hence, the limit is 7 wei.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 68

https://web.archive.org/web/20250228130027/https://docs.base.org/chain/bridge-an-l1-token-to-base#step-1-deploy-your-token-on-base
https://web.archive.org/web/20250212181449/https://eips.ethereum.org/EIPS/eip-1559
https://chainsecurity.com

8.3 Incorrect Permit Functions
Note Version 5

The permit functions of the HOGToken and the BaseFeeLMAToken allow to set an ERC20 approval
based on a signature. They use ecrecover for the signature check, but do not check whether the result
is zero. Hence, anyone can give ERC20 approvals in the name of the Zero-Address for these tokens.
However, as transfers to and from the Zero-Address are blocked, this should not have an impact.

8.4 Liquidations Can Incur Losses to Stability
Pools
Note Version 2

The minimum collateralization ration (MCR) in Hedgehog is set to 150%. Any trove with a collateralization
ratio (CR) lower than MCR is eligible to be liquidated. The liquidations are expected to happen when a
trove's CR is above 100%, hence the stability pool makes a profit. The stability pool should make a loss
only when a trove is liquidated when its CR is below 100%.

As highlighted in Pegging Mechanisms Are Less Strict, Hedgehog does not enforce a hard upper bound
on the price of the debt token BaseFeeLMA. It is possible that BaseFeeLMA can trade in secondary
markets at 150% (or above) of the oracle price. Therefore, even if liquidations happen when a trove's CR
above 100%, the stability pool might incur losses if the price in the secondary market is high.

8.5 Low Redemption Fees Due to High
Overcollateralization
Note Version 2

The redemption fees are determined by the proportion of collateral redeemed relative to the system's
total collateral.

The Hedgehog team anticipates a high overcollateralization ratio between 750% and 1000%. As a result,
redemptions removing large amounts of the debt supply only remove a small fraction of the total
collateral and hence pay a low redemption fee.

Using the formulas for the redeem collateral (baseFeeDebt * price) and the TCR (TotalCollateral /
TotalDebt / price), we can derive the redemption share depending on the baseFeeDebt and the TCR:

RedemptionShare = RedeemCollateral
TotalCollateral = RedeemDebt * price

TotalDebt * TotalDebt
TotalCollateral = RedeemDebt

TotalDebt * 1
TCR

For example, with a 1000% overcollateralization ratio and a base rate of 1%, redeeming 10% of the
supply would incur a fee of 2.5%

RedemptionShare = 0.5% + 1% + 10% * 1
10 = 0.5% + 1% + 1% = 2.5%

and increase the base rate to 2% for the next redemption.

8.6 Minimum Debt Value of a Trove
Note Version 1

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 69

https://chainsecurity.com

Version 1In , the minimum debt amount for a trove is 50 million baseFeeLMA tokens. The value of the
minimum debt scales linearly with the base fee on mainnet. If we consider 3 values from the typical range
of baseFee on mainnet, the value of min debt changes significantly:

• base fee @ 1 Gwei -> min debt value is 0.05 ETH

• base fee @ 50 Gwei -> min debt value is 2.5 ETH

• base fee @ 100 Gwei -> min debt value is 5 ETH

The historical data from Ethereum mainnet shows that the gas price can spike further than 100 Gwei,
which would cause the minimum debt value to be even larger.

Conversely, if the base fee drops to 1 Gwei, the minimum debt decreases to 0.05 ETH. Therefore, the
griefing attack that inject troves in the linked list to make user transactions such as openTrove() or
redeemCollateral() revert, are more likely when base fee is low.

Hedgehog is aware of this behavior and considers it to work according to the system design.

Version 4Changes in :

The minimum debt amount of a trove has been increased from 50 to 100 million base fee tokens.

8.7 Pegging Mechanisms Are Less Strict
Note Version 1

Hedgehog uses similar mechanisms as Liquity to maintain the pegging of BaseFeeLMA to the actual
base fee in Ethereum mainnet. However, important system-wide parameters have been altered, resulting
in less stringent pegging mechanisms. Consequently, BaseFeeLMA can fluctuate in a wider price range:

• Upper bound: The minimum collateralization ratio (MCR) enforces the upper limit of the price
fluctuation for the debt token. If BaseFeeLMA is priced high enough in a secondary market, an
arbitrage opportunity is opened as users can open undercollateralized troves and sell the debt token
in a secondary market to make a profit. Hedgehog sets MCR to 150%, meaning that BaseFeeLMA
can trade in a secondary market up to 150% of its actual value in mainnet before the pegging
mechanism (arbitrage opportunity) kicks in to limit further price increase. Liquity sets MCR to 110%.

• Lower bound: Redemptions enforce that the price of the debt token does not fall below a certain limit
in the secondary markets. If the price of BaseFeeLMA drops below this limit, redemptions open an
arbitrage opportunity as one can buy BaseFeeLMA tokens from the market and redeem them at their
face value in Hedgehog. A fee is charged on redemption, which influences the lower limit.

Moreover, in Hedgehog, redemptions do not increase the borrowing fee. This is because the borrowing
fees are tied to a borrow base rate and not the (redemption) base rate as in the case of Liquity. When the
BaseFeeLMA token trades below its face value, redemptions occur. Since borrowing fees remain
unaffected, the price experiences further downward pressure due to the issuance of additional tokens.

A full review of the soundness of the financial model was not in scope of this review.

8.8 Returned Price When Both Oracles Are
Untrusted
Note Version 5

The function PriceFeed.fetchPrice() checks if the backup oracle is broken or its last two prices
deviate more than allowed (Case 1), and returns the last good price if one of the conditions is satisfied:

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 70

https://chainsecurity.com

// If Backup is broken, both oracles are untrusted, and return last good price
if (
 _backupOracleIsBroken(backupOracleResponse) ||
 _priceChangeAboveMax(
 backupOracleResponse,
 prevBackupOracleResponse,
 decimals
)
) {
 _changeStatus(Status.bothOraclesUntrusted);
 return lastGoodPrice;
}

This behavior is different from Liquity which accepts the Chainlink price if both oracles report a similar
price. Imagine a scenario where the price increases by 12.5% in two subsequent blocks and the backup
is currently used. With the current contract design Block 102 would return the last good price, instead of
the main oracle price:

Ethereum Block 100:

1. Base fee is 1

2. Main oracle price is broken

3. Backup oracle price is 1

4. price is 1

Ethereum Block 101:

1. Base fee is 1.1

2. Main oracle price is broken

3. Backup oracle not updated

4. price is 1

Ethereum Block 102:

1. Base fee is 1.2

2. Main oracle report 1.2

3. Backup oracle report 1.2

4. price is 1

Ethereum Block 103:

1. Base fee is 1.2

2. Main oracle report 1.2

3. Backup oracle report 1.2

4. price is 1.2

Similarly, if the backup oracle is used when the main oracle is broken (Case 2), and the main oracle has
not recovered, then PriceFeed.fetchPrice() will check if the backup oracle response is more than
the allowed deviation away from the previous oracle response. If the deviation is greater than the allowed
deviation, the function will return the last good price otherwise it accepts the backup price. In Liquity's
code the backup price would be accepted even when the backup oracle response is more than the
allowed deviation away from the last good price.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 71

https://chainsecurity.com

8.9 State Variable totalHOGIssued Might Deviate
From Actual HOG Issued
Note Version 1

The state variable CommunityIssuance.totalHOGIssued is public and can be queried externally to
get the amount of HOG tokens that have already been issued. However, callers should be aware that this
value can be updated by privileged accounts and might not reflect the actual amount of issued HOG
tokens:

function setTotalHogIssued(
 uint _newHogIssued
) external onlyRole(DISTRIBUTION_SETTER) {
 totalHOGIssued = _newHogIssued;
 emit TotalHogIssuedManuallyUpdated(_newHogIssued);
}

8.10 Tokens Can Get Stuck When the Issuance Is
Reduced
Note Version 3

An address with DISTRIBUTION_SETTER role can change the overall token issuance with functions
setHOGSupplyCap(), setISSUANCE_FACTOR(), or setTotalHogIssued(). The privileged
addresses that can call these functions are responsible to ensure that the changes are atomic, and the
new issuance curve is correct, hence any change of these parameters should be evaluated carefully.

Note that there is no mechanism to withdraw tokens from the contract, so if the deployer initially transfers
1 million tokens to the contract and subsequently decides to reduce the total issuance, a portion of the
tokens may become irretrievably stuck.

8.11 Trove Changes Are Forbidden in Specific
Scenarios
Note Version 1

Trove modifications, such as removing collateral or closure, are forbidden in case the total
collateralization of the system goes below the critical collateralization ration (200%) afterwards.
Therefore, it is possible that a borrower cannot close its trove or withdraw collateral in specific scenarios.

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 72

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Hedgehog customizations
	2.2.2 Trust Model and Roles
	2.2.3 Changes in Version 2:
	2.2.4 Changes in Version 3:
	2.2.5 Changes in Version 4:
	2.2.6 Changes in Version 5:
	2.2.7 Changes in Version 6:
	2.2.8 Changes in Version 7:

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Dependency on Current Block Time
	5.2 Reducing Fees by Splitting Transactions
	5.3 Missing Configurations in FeesRouter Compromise Accounting
	5.4 Slow Expansion of the BaseFeeLMAToken Supply Due to High Costs
	5.5 Incorrect Rate Adjustment
	5.6 Gas Inefficiency in BaseFeeOracle
	5.7 Attacker With Sufficient Funds Can Lower Redemption Fees
	5.8 Redemptions Without Base Rate Increase
	5.9 Incorrect Code Comments
	5.10 Known Issues From Liquity Are Present in Hedgehog
	5.11 Lack of Documentation

	6 Resolved Findings
	6.1 Collateral Surplus Is Stuck in the Contract
	6.2 Incorrect Price Used for Collateralization Ratio
	6.3 Redeemed Amount Does Not Account for Decimals
	6.4 Wrong Conversion Formula Used in _getCappedOffsetVals
	6.5 Wrong Decimals Returned by _computeCR
	6.6 Liquidations Are Blocked From Withdrawal Limit
	6.7 Withdrawal Limit Does Not Track Collateral
	6.8 Incompatible Interface With BaseFeeOracleArb
	6.9 Gas Compensation Is Ignored in Trove Redemption
	6.10 Gas Compensation Is Not Accounted for Correctly When Closing a Trove
	6.11 Price Feed Returns Wrong Price
	6.12 Price Feed Stores and Returns Wrong Decimals
	6.13 Redemption Fees Can Be Lowered to Floor Value
	6.14 Redemption Rate Double Counts the Redemption Share
	6.15 Withdrawing wstETH Gains to Trove Reverts
	6.16 Wrong Conversion Rate Used in HintHelpers
	6.17 Adversary Can Keep Withdrawal Limit Tiny
	6.18 Incorrect CommunityIssuance Configuration Can Break the StabilityPool
	6.19 Closing a Trove Does Not Update the Withdrawal Limit
	6.20 Double Counting of Full Redemptions in Withdrawal Limit Calculation
	6.21 Limit Can Exceed Active Collateral
	6.22 Liquidations Update Withdrawal Limit in an Inconsistent Way
	6.23 Withdrawal Limit Reset on Collateral Deposits
	6.24 Incorrect Timeout Value in PriceFeedArb
	6.25 Liquidation Price Has Wrong Decimals
	6.26 Locking of Troves Is Longer Than Specified
	6.27 Change of Issuance Curve Has Unexpected Side Effects
	6.28 Chosen Values for Gas Compensation and Minimum Debt Are Low
	6.29 Closing Troves Requires Borrowers Having Larger Balance Than Needed
	6.30 Distribution Functions in FeesRouter Use Wrong Configs
	6.31 Function _getUSDValue Computes Wrong Value
	6.32 Gas Compensation Not Accounted on Redemption Hints
	6.33 Inconsistent Definition of Redemption Share
	6.34 Mismatch of NICR Specifications With Implementation
	6.35 Price Feed Compares Timestamp to Blocknumber
	6.36 PriceFeed Does Not Check if Main Oracle Recovers
	6.37 Redemption Share Is Rounded to Zero
	6.38 Unusual Decimals Used for Values in StabilityPool
	6.39 Wrong Value Used to Calculate the Borrowing Rate With Decay
	6.40 Collateralization Ratio Is Rounded Down
	6.41 Adversary Can Slow the Recovery of Withdrawal Limit
	6.42 Outdated Specification for _handleWithdrawalLimit
	6.43 Precision Issue in Withdrawal Limit Calculation
	6.44 Unclear Specification Regarding Oracle Decimals
	6.45 Withdrawal Limit Function Has Discontinuities
	6.46 Magic Value for Expand Duration
	6.47 Missing Event When Changing Withdrawal Limit
	6.48 Withdrawal Threshold Can Be Circumvented by Splitting Transactions
	6.49 Unnecessary Limitation When Opening a Trove
	6.50 Event BorrowBaseRateUpdated Is Emitted Twice
	6.51 Excess Fee Distribution in FeesRouter
	6.52 Function _findPriceBelowMCR Can Be Improved
	6.53 Immutable Parameters Should Be Constants
	6.54 Incomplete Error Message
	6.55 Incorrect Validation of Repayments
	6.56 Initial Stake Rounds Down to Zero
	6.57 Missing Event When Increasing Balance
	6.58 Missing Sanity Checks
	6.59 Misleading Variable Name in BorrowerOperationsArb
	6.60 Misleading Variable Name in LiquityMath
	6.61 Withdrawal Limit Does Not Take Collateral From Redistributions Into Account
	6.62 Remaining ToDos
	6.63 Gas Optimizations
	6.64 Incorrect Interfaces
	6.65 Misleading Variable Name in BaseFeeOracle
	6.66 Misleading Variable Name in FeesRouter
	6.67 Misleading Variable Name in TroveManager
	6.68 Vulnerable Dependency

	7 Informational
	7.1 Incorrect Comments About Subsequent Base Fee LMA Prices
	7.2 Incorrect Error Message in Recovery Mode
	7.3 Base Fee Oracle Is Incompatible With Chainlink Interface
	7.4 Race Conditions When Opening Troves
	7.5 Slightly Larger Collateral Reported

	8 Notes
	8.1 Bridged Version of HOG Lacks Permit
	8.2 Dependency on EIP-1559 Specification
	8.3 Incorrect Permit Functions
	8.4 Liquidations Can Incur Losses to Stability Pools
	8.5 Low Redemption Fees Due to High Overcollateralization
	8.6 Minimum Debt Value of a Trove
	8.7 Pegging Mechanisms Are Less Strict
	8.8 Returned Price When Both Oracles Are Untrusted
	8.9 State Variable totalHOGIssued Might Deviate From Actual HOG Issued
	8.10 Tokens Can Get Stuck When the Issuance Is Reduced
	8.11 Trove Changes Are Forbidden in Specific Scenarios

