PUBLIC

Code Assessment

of the Hedgehog Protocol

Smart Contracts

Jun 02, 2025

Produced for

HEDGEHOG

PROTOCOL

by
S CHAINSECURITY

Contents

Executive Summary
Assessment Overview
Limitations and use of report
Terminology

Open Findings

Resolved Findings

Informational

o N o o~ W N PP

Notes

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG

12
13
14
23
64
68

https://chainsecurity.com

1 Executive Summary

Dear Hedgehog Team,

Thank you for trusting us to help Hedgehog with this security audit. Our executive summary provides an
overview of subjects covered in the latest reviewed contracts of Hedgehog Protocol according to Scope
to support you in forming an opinion on their security risks.

Hedgehog implements a hedging instrument for the change of the base fee on Ethereum mainnet.
Hedgehog has forked Liquity vl and adapted the smart contracts to implement the gas derivative used
for hedging. This review was limited to the smart contract modifications applied by Hedgehog, under the
assumption of Liquity's codebase being safe. However, it is important to acknowledge that any potential
bug in Liquity could impact Hedgehog too.

The most critical subjects covered in our review are functional correctness and access control. Initially,
security regarding functional correctness was improvable, while security regarding access control was
satisfactory. A set of severe issues were introduced in the initial versions of the codebase, mainly from
two changes:

1. The debt token BaseFeeLMA was using 6 decimals

2. The Base fee oracle returned a price with 1 decimal and the token pair BaseFeeLMA:ETH

These changes were not reflected consistently in the codebase, hence breaking multiple pre-existing
functions. These issues have been resolved in the final version.

In of the codebase a new functionality to enforce a system-wide withdrawal limit was added.
The implementation of this functionality introduced a set of new bugs, the most severe being Liquidations
are blocked from Withdrawal Limit. These findings have been resolved in the final version.

The general subjects covered are trustworthiness, documentation, and testing. Security regarding
trustworthiness have been improved throughout the review, but privileged roles in non-core contracts can
still block user operations, see Trust Model and Roles. Documentation and specification are improvable
and can be extended to describe the changes more thoroughly and systematically. The testing suite has
been enhanced in the later iterations, but testing remains improvable. The tested contracts do not always
match the deployed contracts (i.e. HogToken on Base) and not all code paths are covered by tests.
Hence, we recommend further testing.

The final code version has some lower severity findings were (partial) risks have been accepted (see
Open Findings).

It is important to note that security audits are time-boxed and cannot uncover all vulnerabilities. They
complement but don't replace other vital measures to secure a project.

The following sections will give an overview of the system, our methodology, the issues uncovered and
how they have been addressed. We are happy to receive questions and feedback to improve our service.

Sincerely yours,

ChainSecurity

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 3

https://chainsecurity.com

1.1 Overview of the Findings

Below we provide a brief numerical overview of the findings and how they have been addressed.

EIED-severity Findings 2
N Code Corrected 5
(CL:0)-Severity Findings 11
j Code Corrected) 10
N specification Changed 1
(Medium)-Severity Findings 27
j Code Corrected) 20
N specification Changed 3
of) 1
Y Risk Accepted) 2
Y Acknowiedged 1
(Low)-Severity Findings 26
N Code Corrected 17
Y Specification Changed) 2
of) 2
Y Risk Accepted) 3
Y Acknowiedged 2
I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 4

https://chainsecurity.com

2 Assessment Overview

In this section, we briefly describe the overall structure and scope of the engagement, including the code
commit which is referenced throughout this report.

2.1 Scope

The assessment was performed on the source code files inside the Hedgehog Protocol repository based
on the documentation files. The table below indicates the code versions relevant to this report and when
they were received.

V | Date Commit Hash Note

1 | 11 Mar 2024 | 5d507ca2b2cOdede6ac6f8efe63169che78a3a4c Initial Version
2 | 18 May 2024 | 1773f6fb8e5490a67b6ecad342df0452ac7eda2b Version 2

3 | 03 Jul 2024 242c53a23241679a39d434a5a8a5eef9d7381ad8 Version 3

4 | 26 Aug 2024 | 96670a9d1lec8cdbf71b9e9439a52dc8bd39b9af5 Version 4

5 | 24 Feb 2025 f07d83daea7349db62493307b69e2f274c13fb63 Version 5

6 | 29 Apr 2025 47daaB8e63885edbcc08f14el7bd3a716e782d518 Version 6

7 | 21 May 2025 | 9e9bh8156¢c8adal7dlbdeedObcel48ea43326295 Final Version

For the solidity smart contracts, the compiler version 0. 8. 19 was chosen.

The following files in the folder cont r act s are in scope:

dependenci es
BaseMat h. sol
CheckCont ract . sol
HedgehogBase. sol
| ERC2612. sol
Li qui t yMat h. sol
Li qui t ySaf eMat h128. sol
HOG
Communi t yl ssuance. sol
HOGToken. sol
Acti vePool . sol
BaseFeeLMAToken. sol
BaseFeeOr acl e. sol
Bor r ower Oper ati ons. sol
Col | Sur pl usPool . sol
Def aul t Pool . sol
FeesRout er . sol
GasPool . sol
Hi nt Hel pers. sol
Pri ceFeed. sol
Sort edTroves. sol
St abi l'i tyPool . sol
Tr oveManager . sol

In and the following contracts were included in scope:

(S: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 5

https://chainsecurity.com

BaseFeeOracl eArb. sol (replaced BaseFeeOracl e.sol in version 3)
PriceFeedArb. sol (replaced PriceFeed.sol in version 3)

Bor r ower Oper ati onsArb. sol (replaced Borrower Qperations.sol in version 3)
TroveManager Arb. sol (replaced TroveManager.sol in version 3)

The following contracts were removed from the scope:

BaseFeeOr acl e. sol

Pri ceFeed. sol

Tr oveManager . sol

Bor r ower Oper ati ons. sol

In (Version 5), the previous change was reverted, and the following contracts were included in scope:

BaseFeeOracl e. sol (repl aced BaseFeeOracl eArb.sol in version 5)

Pri ceFeed. sol (replaced PriceFeedArb.sol in version 5)

Bor r ower Oper ati ons. sol (repl aced Borrower Qperati onsArb.sol in version 5)
TroveManager. sol (replaced TroveManager Arb.sol in version 5)

The following contracts were removed from the scope:

depr ecat ed
BaseFeeO acl eAr b. sol
Pri ceFeedArb. sol
Bor r ower Oper at i onsAr b. sol
TroveManager Ar b. sol

In (Version 6), the following files were removed from the scope:

Li qui t ySaf eMat h128. sol

2.1.1 Excluded from scope

Any contracts that are not explicitly listed above are out of the scope of this review. The contracts in
folders hel per s and LPRewar ds are explicitly excluded from scope. Third-party libraries are also out of
the scope of this review.

The implementations of the collateral token W5t ETH in Ethereum mainnet and Base (Ethereum L2), and
the respective bridge are not in scope of this review. Furthermore, the HOGToken contract is planned to
be deployed on Ethereum mainnet, while the bridged token on Layer 2 chain is not in scope of this
review. In this report, we assume the protocol is deployed on the Base chain, hence the correctness of
the codebase if deployed on other chains is not in scope of this review.

We assume that the collateral token Wt ETH is an ERC20 token with 18 decimals that has a conversion
rate to native ETH of less than 100:1.

Earlier versions of the codebase ((Version 1) - (Version 4)) were developed for deployment on Arbitrum.
However, Arbitrum-specific contracts have since been deprecated. The following contracts from earlier
versions are no longer in scope and should not be deployed: BaseFeeOracl eArb. sol
Pri ceFeedArb. sol , Borrower Qper ati onsArb. sol and Tr oveManager Ar b. sol .

In this report, we assume the Liquity v1 is safe, and the review is focused on the changes applied by
Hedgehog to the smart contracts from Liquity. Therefore, any bug present in Liquity might still be present
in Hedgehog.

Finally, the soundness of the financial model was not evaluated.

(S: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 6

https://chainsecurity.com

2.2 System Overview

This system overview describes the initially received version ((Version 1)) of the contracts as defined in the
Assessment Overview.

Furthermore, in the findings section, we have added a version icon to each of the findings to increase the
readability of the report.

Hedgehog offers a hedging instrument for the price change of the base fee in Ethereum mainnet.
Hedgehog has forked Liquity v1 and adapted the smart contracts to implement the hedging instrument. In
this report, we focus on the smart contract changes applied by Hedgehog. A more complete
documentation of Liquity's smart contracts and functionalities can be found here.

EIP-1559 introduced a new pricing model for the gas costs of transactions in Ethereum mainnet.
EIP-1559 splits the gas costs into two parts: 1) base fee, which represents the minimum amount of Ether
a user must pay to have their transactions included in a block; 2) priority fee, or the tip paid to validators
for including a transaction in a block. While the priority fee is chosen freely by users, the base fee is
dynamically adjusted based on changes in network demand to maintain a target level of block space
utilization. When the network is congested, the base fee increases, hence making transactions more
expensive. Conversely, when the network is less congested, the base fee decreases, providing users
with lower transaction fees. The base fee changes with at most 12.5% (higher/lower) depending on the
utilization of the previous block.

Hedgehog implements an ERC20-compliant token named BaseFeeLMAToken that is pegged to the
base fee in the Ethereum mainnet, hence enabling users to hedge gas costs of future transactions.
Obviously, the main difference from Liquity is that the debt token BaseFeeLMAToken does not maintain
a fixed value in terms of USD, instead its value follows the base fee in mainnet. We detail in the next
section the differences from Liquity.

2.2.1 Hedgehog customizations

Hedgehog plans to deploy the smart contracts on a Layer-2 chain, Arbitrum, hence the codebase is
adapted accordingly.

Collateral asset

Hedgehog uses the WStETH (Wrapped Staked ETH) token as a collateral asset instead of Ether used by
Liquity. Therefore, functionalities that transfer the collateral asset have been revised to integrate with a
WSETH, which is an ERC20 token.

Oracles

The Chainlink and Tellor oracles have been replaced with two instances of BaseFeeOr acl e which are
deployed and maintained by Hedgehog. These oracles return the base fee price in Ethereum mainnet. A
trusted off-chain service monitors Ethereum blocks and computes the price of BaseFeeLMAToken as a
logarithmic moving average of the last 50 blocks in mainnet. The smallest is assigned to the newest
value and the largest weight to the oldest value. The oracle returns the price of BaseFeeLMAToken
guoted in wstETH (BaseFeeLMA wst ETH).

New prices should be published roughly every 14 minutes before an oracle is considered frozen by the
contract Pri ceFeed. If the main oracle is frozen, Pri ceFeed relies on the prices returned by the
backup oracle, which is another instance of BaseFeeOr acl e in the case of Hedgehog.

Collateralization parameters

Hedgehog has changed the minimum collateralization ratio from 110% to 150%. Similarly, the critical
collateralization ratio was updated from 150% to 200%. These higher parameters affect the capital
efficiency, liquidations, and the pegging of the BaseFeeLMAToken to the actual base fee in mainnet. In
this report, we do not analyze in depth the financial impact of these changes.

The increase of minimum collateralization ratio (MCR) to 150% and critical collateralization ratio (CCR)
reduce the capital efficiency as users can borrow less debt tokens for the same amount of collateral.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 7

https://github.com/liquity/dev/blob/%40liquity/providers-v1.0.1/README.md
https://eips.ethereum.org/EIPS/eip-1559
https://arbiscan.io/token/0x5979d7b546e38e414f7e9822514be443a4800529
https://chainsecurity.com

During normal mode, troves (borrowers' positions) are liquidated if their collateralization ratio falls below
MCR (150%), while in recovery mode troves with collateralization ratio below CCR (200%) are also
liquidated. Therefore, troves in Hedgehog are expected to have a higher collateralization ratio than in
Liquity.

The minimum collateralization ratio plays a key role in maintaining the pegging of the debt token
(BaseFeelLMAToken) to its actual value (base fee in mainnet). A higher MCR weakens the peg of
BaseFeeLMAToken as the token can trade in secondary markets up to 150% of its real value. If the
BaseFeeLMAToken price in a secondary market exceeds this limit (150%), then there is an arbitrage
opportunity as one can make a profit by minting new BaseFeeLMAToken (borrowing) and selling them
immediately.

Borrowing and redeeming fees

Hedgehog charges fees on borrow and redeem operations. The dynamic fees serve as a throttling
mechanism by charging higher fees for operations that change significantly the total supply of
BaseFeeLMAToken or the collateral held by the protocol. However, the way the dynamic fees are
computed is different from Liquity. Importantly, the borrow rate does not depend on the redemptions
anymore.

The borrowing rate is calculated with the following formula:

IssuedBFee

— * Minutes
BorrowRate = BorrowFloor + BorrowBaseRate * BorrowDecayFactor + TotalBFeeSupply

The borrowing decay factor is chosen such that after roughly 78 minutes the base rate for borrowing
decays by 50%. Note that the borrowing rate does not depend on redemptions, hence the borrowing is
not throttled after large redemptions. There is no cap on the borrowing rates, and they can go up to
100%. Hedgehog charges a borrow fee also during recovery mode although more restrictions apply in
that setting: The trove's CR should be above CCR to improve the overall health of the system, hence
making borrowing less attractive in recovery mode.

The redemption rate is calculated as follows:

_ Minut RedeemCollateral
RedeemRate = RedeemFloor + RedeemBaseRate * RedeemDecayFactor™""*s + ===z~ =2 ==
The redeem decay factor is chosen such that the redeem base rate decays by 50% after 12 hours. The
fee rate is doubled from Liquity, and they are not capped (Liquity caps the borrowing fee rate at 5%).

Fees router

The contract FeesRout er is new in Hedgehog and it manages the fee distribution from borrow and
redeem operations. The Staking contract that received fees in Liquity has been removed. FeesRout er
has a privileged role SETTER that can set configurations for the distribution of fees charged in debt or
collateral tokens.

Each configuration includes up to 3 arbitrary addresses that should receive fees in a predefined ratio.
Configurations for fees in debt tokens and collateral tokens are different.

HOG token

HOGToken is an ERC20-compliant token that implements the permit extension as specified in EIP-2612.
The total supply of HOG token is hard coded at 100 million and the whole supply is minted in the
constructor to an arbitrary nul ti si gAddr ess provided by the deployer. Differently from Liquity, no HOG
tokens are allocated to special accounts such as bounty entitlements or LP Rewards entitlements. The
account mul t i si g is considered trusted and it should distribute HOG tokens to other contracts/accounts
in the system as expected, e.g., to community issuance.

HOGToken is the only contract deployed on Ethereum mainnet, therefore the trusted nul ti si gAddr ess
should bridge tokens to the layer-2 chain where the protocol is deployed.

The initial HOG holder mul t i si gAddr ess should send the expected number of tokens to the contract
Communi t yl ssuance. The latter releases HOG tokens to users of the system based on a predefined

(S: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 8

https://eips.ethereum.org/EIPS/eip-2612
https://chainsecurity.com

curve. Accounts with the privileged role DI STRI BUTI ON_SETTER can update the parameters
HOGSuppl yCap and | SSUANCE_FACTOR that alter the issuance curve.

Removed functionalities

The functionality to reward frontend providers has been removed from Hedgehog. The protocol token
HOG is minted exclusively to the mul ti si g account which is the sole holder after the contract is
deployed. The staking functionality of HOG tokens has been removed. The protocol fees are handled by
the contract FeesRout er as described above.

2.2.2 Trust Model and Roles

Several contracts in Hedgehog Protocol have privileged accounts that need to be trusted to behave
correctly for the protocol to function as expected. We detail these accounts below.

In general, we assume the deployers of contracts are trusted to initially configure contracts with the
correct parameters. Otherwise, users should not interact with contracts that have been misconfigured.

Communitylssuance: Any account with the role DI STRI BUTI ON_SETTER or
DI STRI BUTI ON_SETTER_ADM N are considered fully trusted, and they should be carefully protected. If
an account holding one of these roles is compromised, they can change freely the issuance curve of
HOG tokens to block core functionalities of the system by causing underflows.

HOGToken: The _mul ti si gAddr ess is fully trusted to bridge HOG tokens from Ethereum mainnet to
Arbitrum and distribute them to other contracts of the system as expected, e.g., to Communitylssuance
contract.

BaseFeeOracle: Any account with the role ULTI MATE_ADM N or SETTER is considered fully trusted, and
they should be carefully protected. If an account holding one of these roles is compromised, they can
publish false prices and liquidate healthy troves or mint arbitrary number of debt tokens by opening
undercollaterized troves.

FeesRouter: Any account with the role ULTI MATE_ADM N or SETTER is considered fully trusted, and
they should be carefully protected. If an account holding one of these roles is compromised, they can
redirect fees to arbitrary addresses or remove configurations to block core functionalities of the system.

Finally, the collateral token W5t ETH in Arbitrum is considered fully trusted, including its proxy admin and
the bridging system.

2.2.3 Changes in Version 2.
» The BaseFeeOracle has been revised to return the price for the pair BaseFeeLMA: wSt ETH and
uses 18 decimals.
» The ERC20 token BaseFeeLMA uses 18 decimals.
* The Pri ceFeed target digits are 18 decimals.
 Troves can be modified only once in a block.

* The parameter _BaseFeeLMAAnmount in openTrove() excludes the gas compensation.

2.2.4 Changes in Version 3:

* Fixes of reported issues Locking of Troves Is Longer Than Specified and Misleading Variable Name
in BaseFeeOracle are implemented in new contracts, namely BaseFeeOracl eArb. sol,
Pri ceFeedAr b. sol , Borrower Qper ati onsArb. sol and Tr oveManager Ar b. sol .

«The contracts BaseFeeOracl e.sol, PriceFeed.sol, BorrowerOperations.sol and
Tr oveManager . sol do not include the latest fixes, therefore they should not be deployed. These
contracts were removed from the scope of the audit starting at (Version 3),

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 9

https://chainsecurity.com

» The issuance can no longer underflow when it is being reduced, so the DI STRI BUTI ON_SETTER
can no longer block the system by reducing the issuance.

2.2.5 Changes in Version 4.

The Hedgehog introduced withdrawal limits to address issues Attacker With Sufficient Funds Can Lower
Redemption Fees and Reducing Fees by Splitting Transactions:

On each deposit:

» The new withdrawal limit is set to the old limit plus 50% of the deposit amount.

« If the new limit exceeds the previous collateral value, it is set to 50% of the total collateral and
resetting any withdrawals.

On each withdrawal:

* The withdrawn collateral is deducted from the withdrawal limit.

» Withdrawals from adjusting a trove, closing a trove, and redemptions can only use up to 80% of
the current withdrawal limit.

» Withdrawals resulting from liquidations face no restriction but still update the withdrawal limit.

» Each withdrawal updates the lastWithdrawalTimestamp.

The withdrawal limit recovers linearly over time: After a wait time of EXPAND_DURATION (720 minutes
or 12 hours in (Version 4)), the limit is fully recovered.

2.2.6 Changes in Version 5:
The contracts have been updated to enable deployment on the Layer-2 chain Base instead of Arbitrum.
The withdrawal limits introduced in have been modified.

On each deposit:

» The new withdrawal limit is set to the old limit plus 50% of the deposit amount.

On each withdrawal:
« If the collateral in the active pool falls below 10 WStETH after the withdrawal, the withdrawal
limit is set to the remaining collateral amount.
» The withdrawn collateral is deducted from the withdrawal limit.

» Withdrawals from adjusting a trove, closing a trove, and redemptions can only use up to 80% of
the current withdrawal limit.

 Withdrawals resulting from liquidations face no restriction but still lower the withdrawal limit.

» Each withdrawal updates the lastWithdrawalTimestamp and deducts the withdrawn amount

Withdrawal limits:
The withdrawal limit at any time t is determined by adding the previous limit to the recovered limit:
WithdrawalLimit; = WithdrawalLimit; _ 1 + recoveredLimit;

The withdrawal limit recovers linearly over time after the last withdrawal, gradually increasing until it
reaches the total collateral-based limit over a period of EXPAND_DURATI ON (set to 720 minutes / 12
hours in Version 5).

After 4 hours (or 1/3 of the total recovery duration), the recovered limit is:
recoveredLimit; = 1/3 * (totalCollBasedLimit — WithdrawalLimit;_ 1)

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 10

https://chainsecurity.com

The limit continues recovering until it reaches the total collateral-based limit, which is calculated as the
sum of 50% of the active collateral and the W THDRAWAL LI M T_THRESHOLD (set to 10 WStETH in
Version 5):

totalCollBasedLimit; = 50% * ActiveCollateral + 5

Note: The Active Collateral is retrieved after collateral has been sent out to the user. Therefore, the total
collateral-based limit will be calculated using the post-withdrawal active collateral and does not include
the withdrawn amount.

2.2.7 Changes in Version 6:

In withdrawal limits were removed. Furthermore, the Saf eMat h libraries that were in the
original Liquity code, but no longer needed with the current compiler version, were removed. A recent
change by the Liquity team for one of the known issues of the system was integrated into the Hedgehog
code: https://github.com/liquity/dev/pull/1044.

Last but not least, some gas optimizations were made.

2.2.8 Changes in Version 7:

In the precision of the computation of the collateralization ratio has been increased.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 11

https://github.com/liquity/dev/pull/1044
https://chainsecurity.com

3 Limitations and use of report

Security assessments cannot uncover all existing vulnerabilities; even an assessment in which no
vulnerabilities are found is not a guarantee of a secure system. However, code assessments enable the
discovery of vulnerabilities that were overlooked during development and areas where additional security
measures are necessary. In most cases, applications are either fully protected against a certain type of
attack, or they are completely unprotected against it. Some of the issues may affect the entire
application, while some lack protection only in certain areas. This is why we carry out a source code
assessment aimed at determining all locations that need to be fixed. Within the customer-determined
time frame, ChainSecurity has performed an assessment in order to discover as many vulnerabilities as
possible.

The focus of our assessment was limited to the code parts defined in the engagement letter. We
assessed whether the project follows the provided specifications. These assessments are based on the
provided threat model and trust assumptions. We draw attention to the fact that due to inherent
limitations in any software development process and software product, an inherent risk exists that even
major failures or malfunctions can remain undetected. Further uncertainties exist in any software product
or application used during the development, which itself cannot be free from any error or failures. These
preconditions can have an impact on the system's code and/or functions and/or operation. We did not
assess the underlying third-party infrastructure which adds further inherent risks as we rely on the correct
execution of the included third-party technology stack itself. Report readers should also take into account
that over the life cycle of any software, changes to the product itself or to the environment in which it is
operated can have an impact leading to operational behaviors other than those initially determined in the
business specification.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 12

https://chainsecurity.com

4 Terminology

For the purpose of this assessment, we adopt the following terminology. To classify the severity of our
findings, we determine the likelihood and impact (according to the CVSS risk rating methodology).

« Likelihood represents the likelihood of a finding to be triggered or exploited in practice
« Impact specifies the technical and business-related consequences of a finding

« Severity is derived based on the likelihood and the impact

We categorize the findings into four distinct categories, depending on their severity. These severities are
derived from the likelihood and the impact using the following table, following a standard risk assessment

procedure.

Likelihood Impact
High Medium Low
High CID
Medium GED Low
Low Low Low

As seen in the table above, findings that have both a high likelihood and a high impact are classified as
critical. Intuitively, such findings are likely to be triggered and cause significant disruption. Overall, the
severity correlates with the associated risk. However, every finding's risk should always be closely
checked, regardless of severity.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 13

https://chainsecurity.com

5 Open Findings

In this section, we describe any open findings. Findings that have been resolved have been moved to the
Resolved Findings section. The findings are split into these different categories:

- @M Related to vulnerabilities that could be exploited by malicious actors
o CEEED): Architectural shortcomings and design inefficiencies

o (ENTITED: Mismatches between specification and implementation

Below we provide a numerical overview of the identified findings, split up by their severity.

EED-severity Findings E
(C)-Severity Findings 0
(Medium)-Severity Findings -

« Dependency on Current Block Time
» Reducing Fees by Splitting Transactions

« Missing Configurations in FeesRouter Compromise Accounting ()

» Slow Expansion of the BaseFeeLMAToken Supply Due to High Costs ()
(Low)-Severity Findings {

« Incorrect Rate Adjustment ()

« Gas Inefficiency in BaseFeeOracle ()

« Attacker With Sufficient Funds Can Lower Redemption Fees
+ Redemptions Without Base Rate Increase

» Incorrect Code Comments ()
+ Known Issues From Liquity Are Present in Hedgehog
« Lack of Documentation ()

5.1 Dependency on Current Block Time

(D (Wiedium) (Version) (ETETED)
CS-HOG-066

The Price feed verifies the staleness of a price update by comparing the current block number with the
block number of the last price update. In (Version 4) Hedgehog uses a TIMEOUT of 1600 to determine if a
price update is stale. That means that a price would have to occur within the last 1600 blocks to be
considered fresh.

The current block time on Arbitrum is 0.25 seconds, so a timeout of 1600 blocks translates into 400
seconds or ~33 Etheruem Mainnet blocks.

Note that this condition would change if the block time on Arbitrum is changed. The current iteration of
ArbOS allows a block time as low as 0.1 seconds. More information can be found here.

In that case the timeout would be 1600 * 0.1 = 160 seconds or ~13 Ethereum Mainnet blocks. In case the
block time is lowered even further, the project could risk being permanently stuck in a state where the
price feed is considered stale, if Hedgehog fails to update the price fast enough.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 14

https://web.archive.org/web/20240829091524/https://research.arbitrum.io/t/the-power-of-faster-blocks/9609
https://chainsecurity.com

Changes in (Version 5);

The protocol will now be deployed onto Base Chain instead of Arbitrum. Base Chain has a block time of 2
seconds, but other OP Chains (e.g., Unichain) have a 1-second block time, with plans to reduce it to
250ms in the future.

Risk accepted:
The Hedgehog has accepted this risk but has chosen to keep the code unchanged. Their response:

Acknowledged. We are tracking the block times and would make adjustments to the deployment if
anything changes. Currently in tests we've updated the timeout to 200 which corresponds to the
same 400 seconds on Base blockchain

If the block time on Base Chain decreases by too much then Pri ceFeed can start to consider all prices
as frozen and fallback to the last good price before the change. Hedgehog plans to deploy a new version
of the protocol in that case and expects users to migrate their positions.

5.2 Reducing Fees by Splitting Transactions
CITD) (Miedium) (Version 2) G

The borrowing fee depends on the amount of tokens borrowed compared to the total supply.

CS-HOG-057

IssuedBFee

— * Minutes
BorrowRate = BorrowFloor + BorrowBaseRate * BorrowDecayFactor + TotalBFeeSupply

By splitting the borrowing operation into multiple smaller operations, users can effectively reduce the
overall borrowing fees. This is because each individual call increases the total supply by a smaller
percentage, and the total supply grows with each operation.

Consider a scenario where the current token supply is 10 million tokens, and the base borrowing rate
(BorrowBaseRate) is 0. A user intends to borrow 1 million tokens.

Borrowing 1 million tokens in a single operation would result in a borrowing fee calculated as:
BorrowRate = 0.5% + == = 10.5%

However, if the user splits the borrowing into two transactions of 500,000 tokens each, the borrowing fee
for each transaction is calculated as follows:

BorrowRate = 0.5% + ?—'05 =5.5%

BorrowRate = 0.5% + 2> = 5.3%

5.5%%0.5+5.3%%x0.5 _ 5.4%

TotalBorrowRate = T

The user can roughly half the fee they are paying by splitting the borrowing into two transactions. A
sophisticated user can split the borrow further to lower the fees even more, and trade this off against the
gas costs of the additional transactions.

By splitting the borrowing into two operations, the user can significantly reduce the total fee paid. A more
sophisticated approach of further splitting the borrow can reduce the fees even more, balanced against
the gas costs of additional transactions.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 15

https://chainsecurity.com

The underlying issue is that the amount of fees paid is path dependent, meaning that the fees paid
depend on the path taken to reach the final state. Instead, each marginal token borrowed should have
the same fee independent of if they were borrowed in a large or small transaction.

Similarly, the redemption fees are also path dependent. The redemption fee is calculated as follows:

RedeemRate = RedeemFloor + RedeemBaseRate * RedeemDecayFactor™inutes 4 RedeemCollateral

Note that splitting a redemption into multiple transactions does lower the redemption share
(redeemCollateral/TotalCollateral) and hereby the cost. Each redemption further decreases the collateral
still locked in the system and hereby having an effect in the other direction. However, for all redemptions
that are not the last one, the effect of the decreased collateral is smaller than the effect of the decreased
share of the total collateral.

Note that Hedgehog expects price discovery to mostly happen on the secondary market, due to the high
fees for borrowing and redemption. By exploiting this design flaw, users can effectively reduce the fees
paid for borrowing and redemption. This is a design issue, as the fees paid should be independent of the
path taken to reach the final state.

Risk accepted:

Hedgehog has accepted the risk but has decided to keep the redemption fee mechanism unchanged. In
they have introduced withdrawal limits to mitigate the impact of this issue. They answered:

Wthdrawal linmts should increase the econonmic barrier for redenption-type attacks.
Additionally, they would give the DAO and the HDG teamtine to conpensate for any

| oss of collateral at their own expense. This nmeans that not only would it prevent
attacks that mght be profitable for users, but it would also provide a way to mitigate
the danage fromgriefing attacks.

Note on audit process: We independently discovered this issue, which is also present in Liquity's
codebase. However, it has a higher severity for Hedgehog, as redemption fees play a more critical role in
limiting the number of redemptions. The Liquity team's write-up on this issue can be found here.

5.3 Missing Configurations in FeesRouter

Compromise Accounting
(D (Medium) (Version 1)()

The contract FeesRout er is responsible for distributing the protocol fees according to predefined
configurations. Accounts with SETTER role in FeesRout er can set and update such configurations.
However, if there is no configuration for a given percentage, then no fee is distributed.

CS-HOG-023

In case the fee is charged in debt token, function di st ri but eDebt Fee() does not mint the respective
BaseFeeLMAToken, thus the total supply of the debt token gets smaller than the total debt owed by all
borrowers. This might render the last trove impossible to close as the circulating supply is less than the
repayment amount.

Similarly, function di stri but eCol | Fee() does not distribute fees from the active pool when the
respective configuration is not set in col | FeeConfi gs.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 16

https://web.archive.org/web/20241003094541/https://github.com/liquity/bold?tab=readme-ov-file#3---path-dependent-redemptions-lower-fee-when-chunking
https://chainsecurity.com

Code partially corrected:

New checks are added in the function di stri but eDebt Fee() and di stri but eCol | Fee() that
revert a transaction if the respective configuration is not set. However, the side effect of this approach is
that key functionalities such as opening a trove, or liquidations might be blocked if a configuration is not
properly set in the contract FeesRouter.

5.4 Slow Expansion of the BaseFeeLMAToken

Supply Due to High Costs
() (Medium) (Version 1)()

In Hedgehog's code, the borrowing rate is dependent on the total supply of BaseFeeLMATokens. The
formula used to calculate the borrowing rate is:

CS-HOG-027

BorrowRate = BorrowFloor + BorrowBaseRate + IssuedBFee/TotalBFeeSupply

This formula suggests that a rapid expansion of the token supply is not feasible, as doubling the supply
(IssuedBFee = TotalBFeeSupply) would require the borrower to pay 100% of the borrowed amount as
fees. Note that paying 100% in fees is not feasible, as the user also must cover the gas compensation.

The maximum amount of BaseFeeLMATokens that can be minted is enforced in
Bor r owOper at i ons. openTrove() as:

IssuedBFee = BFeeMintedToUser + GasCompensation + BorrowRate * IssuedBFee

In Hedgehog's code, each borrowing event adds the borrowing rate to the Bor r owBaseRat e, which then
decays over time with a half-life of approximately 1.3 hours (or 78 minutes). If the initial supply is low, the
supply can only increase slowly due to excessive fees on large borrowings and then having to wait until
the fee decays back. A profit-oriented minter would likely only accept a much lower percentage fee than
the maximum possible, so the actual expansion rate would be much lower. It should be noted that an
attacker could grieve the system by creating a very small initial supply, which would require manual
intervention to increase the supply or slow down the system for several weeks.

Acknowledged:

Hedgehog has acknowledged the issue and provided the following reply:

The BaseFeeLMA economy project differs much fromthe stabl ecoin-based Liquity.
Particularly, secondary nmarket is the preferred way of obtaining the token for
specul ation or hedging. This is due to expected basefee junps being only partially
of fset by the LMA technique, which would pose excessive |iquidation risks and | ead
to collateral exhaustion in case of unlinmted access to borrow ng. Incentives for
secondary market participation are therefore given priority over steady token
supply grow h.

A profit-oriented agent is, on the other hand, inclined to m nt higher initial
supply within the OCRlimt, due to zero baserate set for the initial borrow ng
transaction. However, the possibility of supply grieving attack suggests that the
initial supply should be generated by the teaminredi ately upon depl oynent, as a
security neasure.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 17

https://chainsecurity.com

5.5 Incorrect Rate Adjustment

(D (Low) (Version 6)()

The Borrow Base Rate and the Redemption Rate are computed incorrectly. The reason is the same for
both (just in different functions), hence, we explain it for the Borrow Base Rate:

CS-HOG-083

The function _cal cDecayedBorrowBaseRate() computes the new base rate using
_m nut esPassedSi ncelLast Bor r ow() , which contains the following code:

(bl ock. ti mestanp | ast Bor r owTi ne) SECONDS_| N_ONE_M NUTE;
Then later the | ast Bor r owTi ne is updated as follows:

ui nt 256 ti nePassed bl ock. ti mest anp | ast Bor r owTi ne;

i f (tinmePassed SECONDS | N_ONE_M NUTE) {
| ast Borr owTi e bl ock. ti mest anp;
em t Last BorrowTi meUpdat ed(bl ock. ti mest anp);

}

If the time that has passed is 1 minute and 59 seconds, then _m nut esPassedSi ncelLast Borr ow)
will return 1 minute and hence the Borrow Base Rate will be updated based on 1 minute. However, the
| ast Bor r owTi ne will be moved forwards by 1 minute and 59 seconds. Hence, almost two minutes
have passed but the Borrow Base Rate has only decayed for one minute. Note that for less regular
updates the relative error will not be as big.

In the case of the Redemption Rate, the variable incorrectly updated is | ast Redenpt i onTi re.

Acknowledged:
The Hedgehog has acknowledged the issue, but has decided to keep the code unchanged. They have
provided the following reasoning:

it doesn't seemcritical but the fix has significant inpact on the figures and
we don't want to diverge fromLiquity too much in this regard.

5.6 Gas Inefficiency in BaseFeeOracle
[Low] [Version 5][]

The f eedBaseFeeVal ue function of the BaseFeeOr acl e contract needs to be called regularly to
provide the system with up-to-date base fee prices. Hence, its gas costs are relevant, even on a fairly
cheap chain like Base chain.

CS-HOG-075

During its execution a Response struct is stored.

1. The Response is defined as:

struct Response {
i nt 256 answer ;
ui nt 256 bl ockNunber ;

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 18

https://chainsecurity.com

ui nt 256 current Chai nBN
ui nt 256 roundl d

However, values like block numbers and round IDs, do not require 256 bit. With smaller value types,
less storage would be consumed by each stored Response. This would lower the execution cost of
f eedBaseFeeVal ue() .

2. The Response struct is always stored in a new place. It is unclear whether Response entries from
e.g. ten rounds ago are still required. Otherwise, old Response entries could be overwritten, which
would be significantly cheaper gas-wise.

Code partially corrected:

In (Version 6), the blockNumber, currentChainBN, and roundld fields are cast to uint64, so that the
Response struct can be stored in two storage slots instead of four slots. Hedgehog has decided not to
overwrite old Response entries, providing the following reasoning:

W’ ve decided that long-termretrieval of the oracle data is necessary for the protocol transparency
so we’'ve | eft the behavi our unchanged.

5.7 Attacker With Sufficient Funds Can Lower
Redemption Fees

(D (Cow) (Version 2) (ETETED)
CS-HOG-056

In of Hedgehog's code the redemption fee is calculated based on the proportion of collateral
redeemed relative to the total collateral locked in the system. A user can interact with the system only
once per block, which prevents adding collateral and removing collateral to the same trove via flash
loans.

However, an attacker with sufficient collateral can still lower the redemption fee by inflating the system's
collateral. They can borrow additional funds from a 3rd party protocol, e.g., via flashloan, and proceed to
pay back the loan with their own funds. The attack requires at least two open Troves (A and B) and can
be performed within 3 blocks.

Block 100:
1. The attacker deposits their collateral (e.g. 1000 wstETH) into Trove A".
Block 101:
1. The attackers borrow 1000 wstETH from a 3rd party protocol and add it as collateral to Trove B.
2. They redeem the target trove, paying a lower redemption fee due to the inflated collateral balance.
3. They remove the collateral from Trove A and repay the loan in the same transaction.
Block 102:

1. They remove the collateral from Trove B.

Note that Arbitrum has a block time of 0.25 seconds, which means that the attack can be performed
within a second and pay negligible interest for the borrowed amount.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 19

https://chainsecurity.com

Risk accepted:

Due to the block-level limits, the impact is limited. Hedgehog is aware of this issue and is accepting the
risk.

5.8 Redemptions Without Base Rate Increase

D (Cow) (Version 2) (EITETED)

The of the protocol removed an assertion check from function
TroveManager . _updat eRedenpt i onBaseRat eFr onRedenpti on. This check previously ensured
that the new base rate was always non-zero after a redemption:

CS-HOG-052

function _updateRedenpti onBaseRat eFromRedenpti on(
ui nt WSt ETHDr awn
) internal returns (uint) {

ui nt redeenedBaseFeeLMAFracti on _ WSt ETHDr awn
. mul (DECI MAL_PRECI SI ON)
.div(activePool . get Wst ETH() def aul t Pool . get WBt ETH()) ;

ui nt newBaseRat e decayedRedenpti onBaseRat e. add(
r edeenedBaseFeeLMAFr acti on

)

newBaseRat e Li qui tyMat h. _m n(newBaseRat e, DECI MAL_PRECI SI ON) ;

The change allows a redemption to occur without increasing the base rate of the protocol. This is
possible when the fraction r edeenedBaseFeelLMAFr act i on rounds to zero, which can occur when the
amount of WStETH drawn is small compared to the total collateral in the system.

totalCollateral
_WStETHDrawn < teteltatateral

An attacker can exploit this by splitting a large redemption into multiple smaller redemptions to avoid
increasing the base rate of the protocol.

Risk accepted:

Hedgehog is aware of this issue but has decided to keep the code unchanged.

5.9 Incorrect Code Comments

(D (Low) (Version 1)()

1. The code comment for the variable Communi t yl ssuance. HOGSuppl yCap states that it should
be set to 32 million, however the distribution setters can freely assign any value to it.

CS-HOG-035

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 20

https://chainsecurity.com

. The code comment in the contract Act i vePool refers to the collateral token as st W6t ETH instead

of W5t ETH.
.In function Bor r ower Qper at i ons. _adj ust Trove(), the comment
Use the unnodified _BaseFeeLMAChange here, ... does not match the code which
passes _ BaseFeeLMAChange - vars. BaseFeeLMAFee to the internal function

_nmoveTokensAndWst ETHf r omAdj ust ment () .

4. The comment for function Pri ceFeed. f et chPri ce() refers to the Liquity oracles.

5. The max deviation allowed for two consecutive prices in Pri ceFeed is set to 17. 6% however

10.

11.

12.

13.

14.

several code comments refer to other percentages such as 12. 5%or 50%

. Similarly, the max deviation allowed between main and backup oracle is set to 5% however

comments are notinline: Return true if the relative price difference is <= 3%

. The struct Response in the contract Pri ceFeed does not include a success flag, however

comments refertoit: . .. return a zero response with success = fal se.

. The code comments in the function Tr oveManager. cal cRedenpti onFee() imply that checks

are now performed in the Borrower Qperations contract, but they are performed in
TroveManager . redeentCol | ateral ().

.In the function TroveManager. redeentCol | at eral Fronirove, the comment

Change WSt ETHLOT cal cul ations formula from ... does not match the code which
calculates the W5t ETHLot as debt x price.
The code comments for function

TroveManager . updat eRedenpt i onBaseRat eFr onRedenpti on() refer to a face value rate
of (1 BaseFeeLMA: 1 USD) instead of (1 BaseFeeLMA: 1 Base fee noving average).
Furthermore, in contrast to the code comments, the W5t ETH is not converted to BaseFeeLMA, but
the share of the collateral is used to calculate the redemption fee.

The code comments of function Def aul t Pool . i ncreaseBal ance() state that the function can
only be called by the active pool, but it can only be called by the Tr oveManager .

The comment above function Tr oveManager. checkPot enti al Recover yMode() refers to
the price of the pair Wt ETH: USD, however the price is used is for the pair BaseFeelLMA: ETH.

The comment above function Tr oveManager. get Nor mal Li qui dati onPrice() describes
another functionality.

The code comment above function
St abi li tyPool . get ConpoundedSt akeFr onSnapshot s() refers to front ends which have
been removed in Hedgehog Protocol.

15. The code comments in the function Tr oveManager. _get CappedO f set Val s() describing the
cappedCollPortion formula do not match the code.
(Version 4]
16. The constant BaseFeeLMA GAS_COVPENSATI ON is set to 300.000 * 10e18, however the code

17.

18.

19.

comments refer to 100.000 * 10e6.

The code comments above Borrower Oper ati onsArb. set Addr esses() refer to the wrong
variable name | ast W t hdr awTi nest anp.

The code comments above function _handl eWthdraw Limt imply that the Ilimit is
[imt = old limt + 50% + ..., however the Iimit is calculated as
limt =old limt + 50%*

The code comments above function _handl eW t hdr awl Li mi t say that "new limit is greater than
or equal to 50% of the new total collateral". This is not possible for collateral values above the
threshold.

(Version 5}

S

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 21

https://chainsecurity.com

16. Code comments in PriceFeed. scal ePri ceByDi gits() state that the main oracle has 8
digits, but the code uses 18 digits.

17. The URL to EIP 2612 in | ERC2612 has been changed to * * ei ps. wSt ETHeum or g/ **.

18. The natspec comments above FeesRout er. get Pct Range state that "In case the fee is less
than 3% it's going to round to 5% anyway". However, if the fee is less than 1%, it will be rounded to
0%.

Code partially corrected:

The incorrect code comments in points 1-4 and 6-15 have been fixed in and incorrect code
comments in points 16-18 have been fixed in (Version 5),

5.10 Known Issues From Liquity Are Present in
Hedgehog

(D (Cow) (Version 1) (ETIEETED)

Known issues in Liquity published in the Github advisories and repository's documentation are present in
Hedgehog codebase.

CS-HOG-038

Risk accepted:

Hedgehog is aware of the known problems and leaves them for further examination.

5.11 Lack of Documentation

D (Low) (Version 1))

The functionalities modified by Hedgehog are not properly documented. The documentation for new
functionalities in FeesRouter, BaseFeeOracle, and TroveManager (get **Li qui dati onPrice()) are
not complete.

CS-HOG-021

Acknowledged:

Hedgehog has improved inline specifications in the last iterations of the codebase, but complete
documentations will be provided in the future.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 22

https://github.com/liquity/dev/security
https://github.com/liquity/dev?tab=readme-ov-file#known-issues
https://chainsecurity.com

6 Resolved Findings

Here, we list findings that have been resolved during the course of the engagement. Their categories are

explained in the Open Findings section.

Below we provide a numerical overview of the identified findings, split up by their severity.

EEED-severity Findings

» Collateral Surplus Is Stuck in the Contract

» Incorrect Price Used for Collateralization Ratio

» Redeemed Amount Does Not Account for Decimals

« Wrong Conversion Formula Used in _getCappedOffsetVals
 Wrong Decimals Returned by _computeCR

(C)-Severity Findings

11

» Liquidations Are Blocked From Withdrawal Limit

» Withdrawal Limit Does Not Track Collateral

» Incompatible Interface With BaseFeeOracleArb

+ Gas Compensation Is Ignored in Trove Redemption

+ Gas Compensation Is Not Accounted for Correctly When Closing a Trove
» Price Feed Returns Wrong Price

» Price Feed Stores and Returns Wrong Decimals

+ Redemption Fees Can Be Lowered to Floor Value
+ Redemption Rate Double Counts the Redemption Share
» Withdrawing wstETH Gains to Trove Reverts

* Wrong Conversion Rate Used in HintHelpers

‘ (Medium)-Severity Findings

3|

« Adversary Can Keep Withdrawal Limit Tiny

» Incorrect Communitylssuance Configuration Can Break the StabilityPool
» Closing a Trove Does Not Update the Withdrawal Limit

» Double Counting of Full Redemptions in Withdrawal Limit Calculation

« Limit Can Exceed Active Collateral

» Liquidations Update Withdrawal Limit in an Inconsistent Way

« Withdrawal Limit Reset on Collateral Deposits

« Incorrect Timeout Value in PriceFeedArb

» Liquidation Price Has Wrong Decimals

» Locking of Troves Is Longer Than Specified

« Change of Issuance Curve Has Unexpected Side Effects

« Chosen Values for Gas Compensation and Minimum Debt Are Low

» Closing Troves Requires Borrowers Having Larger Balance Than Needed

@ Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG

23

https://chainsecurity.com

« Distribution Functions in FeesRouter Use Wrong Configs

» Function _getUSDValue Computes Wrong Value

+ Gas Compensation Not Accounted on Redemption Hints

» Inconsistent Definition of Redemption Share

« Mismatch of NICR Specifications With Implementation

* Price Feed Compares Timestamp to Blocknumber

» PriceFeed Does Not Check if Main Oracle Recovers
 Redemption Share Is Rounded to Zero

+ Unusual Decimals Used for Values in StabilityPool

+ Wrong Value Used to Calculate the Borrowing Rate With Decay

(Low)-Severity Findings

19

» Collateralization Ratio Is Rounded Down

+ Adversary Can Slow the Recovery of Withdrawal Limit
« Outdated Specification for _handleWithdrawalLimit

» Precision Issue in Withdrawal Limit Calculation

» Unclear Specification Regarding Oracle Decimals
« Withdrawal Limit Function Has Discontinuities

« Magic Value for Expand Duration

« Missing Event When Changing Withdrawal Limit

« Withdrawal Threshold Can Be Circumvented by Splitting Transactions
» Unnecessary Limitation When Opening a Trove

« Event BorrowBaseRateUpdated Is Emitted Twice

» Excess Fee Distribution in FeesRouter

« Function _findPriceBelowMCR Can Be Improved
« Inmutable Parameters Should Be Constants

« Incomplete Error Message

« Incorrect Validation of Repayments

+ Initial Stake Rounds Down to Zero

» Missing Event When Increasing Balance

» Missing Sanity Checks

Informational Findings

10

» Misleading Variable Name in BorrowerOperationsArb

» Misleading Variable Name in LiquityMath

« Withdrawal Limit Does Not Take Collateral From Redistributions Into Account
+ Remaining ToDos

+ Gas Optimizations

* Incorrect Interfaces (CLCRSIEEET
 Misleading Variable Name in BaseFeeOracle (Sl

@ Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG

24

https://chainsecurity.com

 Misleading Variable Name in FeesRouter (&I
* Misleading Variable Name in TroveManager (SRS

* Vulnerable Dependency (SRSl

6.1 Collateral Surplus Is Stuck in the Contract

In Hedgehog's code, the function TroveManager.|i qui dateTroves() function fails to call
increaseBalance to update the wstETH balance of the collateral surplus pool.

CS-HOG-001

Similarly, Tr oveManager . _r edeenCl oseTrove() fails to update the wstETH balance when sending
the surplus wstETH. Now, whenever a user calls Col | Sur pl usPool . cl ai nCol | () , the call reverts
on underflows of WStETH and the funds are stuck in the contract.

Code corrected:

The function Tr oveManager . | i qui dat eTroves() has been revised to call i ncr easeBal ance()
when sending the collateral to the surplus pool:

if (totals.total Coll Surplus 0) {
col | Sur pl usPool . i ncreaseBal ance(total s. total Col | Surpl us);
contract sCache. acti vePool . sendWst ETH(
address(col | Surpl usPool),
total s.total Coll Surplus

}

Similarly, the function _redeenCl oseTrove() has been updated to i ncreaseBal ance() when
sending collateral from the active pool to the surplus pool.

6.2 Incorrect Price Used for Collateralization Ratio

Code Corrected

The function Li qui t yMat h. _conput eCRis crucial to compute the collateralization ratio (CR) of a trove
or the system:

CS-HOG-002

uint newCol | Ratio = _coll.nmul (DECI MAL_PRECI SI ON) . di v(_debt) . div(_price);

The value of _price is retrieved from PriceFeed which returns the price for the pair
BaseFeeLMA: ETH. However, the function _conput eCR() is called with _col | representing a WStETH
amount and _debt representing a BaseFeeLMA amount. Therefore, the conversion of collateral amount
into debt token is incorrect.

Code Corrected:

The Pri ceFeed now returns the price for the asset pair BaseFeeLMA: W&t ETH. Note that decimals are
not correct yet (see: Wrong decimals returned by _computeCR).

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 25

https://chainsecurity.com

6.3 Redeemed Amount Does Not Account for
Decimals

Code Corrected

The function Tr oveManager . _r edeentCol | at er al Fr oniTr ove() calculates the amount of WstETH
that can be redeemed using the following formula:

CS-HOG-003

si ngl eRedenpt i on. Wt ETHL ot si ngl eRedenpt i on. BaseFeeLMALot . nul (_price);

BaseFeOracle returns the price for the token pair ETH BaseFeeLMA, hence an incorrect price is used to
convert BaseFeeLMALot into W6t ETHLot . Furthermore, the oracle returns prices with 1 decimal which
is not accounted in the formula above, causing an error on the redeemed amount with an order of
magnitude.

(Version 2]

The codebase had been updated to use 18 decimals for the BaseFeeLMA token, and 18 decimals for the
price. Thus, the formula:

si ngl eRedenpt i on. BaseFeeLMALot . mul (_price);

returns a value in 36 decimals instead of 18, hence computing a wrong result.

Code corrected:

The codebase has been updated to divide the result of the multiplication by 1e18 to account for the 18
decimals in the price.

6.4 Wrong Conversion Formula Used in

_getCappedOffsetVals

The function Tr oveManager. get CappedO f set Val s() incorrectly converts a debt amount into
collateral:

CS-HOG-004

ui nt cappedCol | Porti on _entireTroveDebt. mul (MCR). nul (_price).div(DECI MAL_PRECI SI ON) ;

The _price retrieved from the PriceFeed returns the exchange ratio for the token pair
BaseFeelLMA: ETH and is incorrectly used to convert BaseFeelLMA tokens into W5t ETH. Furthermore,
the debt amount _entireTroveDebt is in the base fee token (6 decimals), while the price uses 1
decimal. Thus, the division by 1e18 is incorrect.

(Version 2]

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 26

https://chainsecurity.com

The Pri ceFeed has been updated to return the price for the token pair BaseFeeLMA: W5t ETH. Further
the BaseFeeLMA token and the price now have 18 decimals.

Thus, the formula:

ui nt cappedCol | Porti on _entireTroveDebt. mul (MCR). nul (_price).div(DECI MAL_PRECI SI ON) ;

returns a value of 36 decimals instead of 18, hence computing a wrong collateral amount. Furthermore,
the intermediate result _entireTroveDebt. mul (MCR). mul (_price) has 48 decimals and can
overflow.

Code corrected:

The function _get CappedOf fsetVal s has been updated to divide the intermediary result by
DECI MAL_PRECI SI ONto normalize the result to 18 decimals:

ui nt cappedCol | Portion _entireTroveDebt
nul (MCR)
di v(DECI MAL_PRECI SI ON)
mul (_price)
di v(DECI MAL_PRECI SI ON) ;

6.5 Wrong Decimals Returned by computeCR

The function Li qui t yMat h. _conput eCR() does not handle decimals correctly, therefore returning
wrong collateralization ratios (CR):

CS-HOG-005

uint newCol | Rati o _col | . mul (DECI MAL_PRECI SI ON) . di v(_debt).div(_price);

Note that _col | is in 18 decimals (WStETH), _debt is in 6 decimals (BaseFeeLMA), while _pri ce has
1 decimal (BaseFeeOracle). Therefore, the computed value is in 29 decimals. This is a severe issue
since the system parameters MCR and CCR are in 18 decimals. Therefore, even undercollateralized troves
would pass checks for MCR and CCR.

(Version 2

The codebase had been updated to use 18 decimals for the BaseFeeLMA token, and 18 decimals for the
price. Thus, the formula:

uint newCol I Ratio = _coll.nmul (DECI MAL_PRECI SI ON) . di v(_debt) . div(_price);

returns a value with no decimals instead of 18, hence computing a wrong CR value.

Code corrected:

The codebase now multiplies by DECI MAL_PRECI SI ON (10**18) before dividing by the price, hence the
CR is now in 18 decimals.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 27

https://chainsecurity.com

6.6 Liquidations Are Blocked From Withdrawal
Limit
(Design | High W] Code Corrected

The Hedgehog specifies in function Tr oveManager Ar b. _sendGasConpensat i on() that liquidations
should not revert when the withdrawn collateral exceeds 80% of the current withdrawal limit.

CS-HOG-059

However, the function then updates the withdrawal limit in
Bor r ower Oper ati onsArb. _handl eWthdrawal Li mt():

(uint256 fullLimt, uint256 singleTxWthdrawabl e) Li qui tyMat h
. _checkWthdraw Limt(
| ast Wt hdrawl Ti nest anp,
EXPAND_DURATI ON,
unusedWthdraw Lim t,
acti vePool . get W5t ETH()

)

if (_wthSingleTxLimt si ngl eTxW t hdr awabl e _col Il Wthdrawal) {

revert(
"BO Cannot wi thdraw nore then 80% of wi thdrawble in one tx"

)

unusedW t hdrawl Li m t fullLimt _col Il Wt hdrawal ;

If the collateral withdrawn exceeds the limit, the transaction will not revert with "BO: Cannot withdraw
more than 80% of withdrawable in one tx" since _wi t hSi ngl eTxLi nit is false during liquidations.
However, since the collateral withdrawn exceeds the calculated value of full_limit, updating the unused
withdrawal limit will cause an underflow and the transaction will revert. This effectively blocks all
liquidations once the withdrawal limit is reached.

Code Corrected:

A ternary operator was added to prevent the arithmetic underflow:

unusedW t hdr awal Li mit fullLimt _col | Wt hdrawal
fullLimt _col | Wt hdrawal
0;

Hence, the code has been fixed.

6.7 Withdrawal Limit Does Not Track Collateral
(Design | High [(ZZ73R0)] Code Corrected)

The withdrawal limit is expected to be smooth to make its behavior predictable for outside users.
However, there are certain interactions that are not accounted for in the calculation of the withdrawal limit
and leading to erratic behavior.

CS-HOG-064

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 28

https://chainsecurity.com

1. The withdrawal limit is equal to the collateral value up to the WITHDRAWAL_ LIMIT_THRESHOLD
and half of the collateral value or less afterward. The limit jumps on this threshold value.

« If the active pool has 99 wstETH and the limit is 99, adding 2 wstETH causes the limit to
become 50.5.

2. When the unused withdrawal limit allows pushing the collateral below the threshold, all collateral
can be withdrawn.

» For example, if the active pool has 100 wstETH and the limit is 50, withdrawing some collateral
causes the limit to reset to the threshold (100).

activePool. getWStETH() — WITHDRAWAL _LIMIT THRESHOLD = unusedWithdrawalLimit

Code corrected:

The code has been corrected to make withdrawal limits track the collateral more smoothly. However, the
withdrawal limit function is not smooth close to the withdrawal limit;: Withdrawal limit function has
discontinuities.

6.8 Incompatible Interface With
BaseFeeOracleArb

(Correctness JHIENEZZTI)] Code Corrected)

The contract Pri ceFeedAr b imports the interface | BaseFeeOr acl e which declares the following
function:

CS-HOG-054

functi on get RoundDat a(ui nt 256 _roundl d) external view
returns (uint256, int256, uint256, uint256, uint256);

However, the respective functions implemented in BaseFeeOr acl eArb uses a different input type
(ui nt 80 instead of ui nt 256), which results in a different function selector:

functi on get RoundDat a(ui nt 80 _roundld) public view
returns (uint80, int256, uint256, uint256, uint80);

Furthermore, the types of return values for both functions get RoundDat a() and | at est RoundDat a()
in BaseFeeOr acl eAr b are different from the interface declaration.

Code corrected:

In of the contract, the function signature of get RoundDat a() and | at est RoundDat a() in
BaseFeeO acl eAr b is updated to match the interface declaration.

6.9 Gas Compensation Is Ignored in Trove
Redemption

(Correctness JHEN\ETZZTI] Code Corrected)

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 29

https://chainsecurity.com

CS-HOG-006

When calculating the amount of BaseFeeTokens required to redeem a Trove in
Tr oveManager . _redeentCol | at er al Fr onilr ove(), the gas compensation reimbursed to the user is
not deducted from the debt of the Trove.

If the redeemer provides a value for _maxBaseFeeLMAanount that is large enough to cover the full debt
of a Trove, the Trove should be closed. However, since the gas compensation is not deducted from the
debt, the new debt becomes zero and the redemption will be subsequently canceled.

function _redeenCol | ateral Fronmlrove(..., _maxBaseFeeLMAanount, ...) {
si ngl eRedenpt i on. BaseFeeLMALot Li qui tyMat h. _m n(_naxBaseFeeLMAanount, Troves[_borrower]. debt);

ui nt newDebt (Troves[_borrower] . debt). sub(singl eRedenpti on. BaseFeeLMALot) ;

it (newbDebt BaseFeeLMA_GAS_COWPENSATI ON) {
. close trove ...
el se {
ifo(
newNl CR _partial Redenpti onHi nt Nl CR _get Net Debt (newDebt) M N_NET_DEBT
) |

si ngl eRedenpt i on. cancel | edParti al true;
return singl eRedenpti on;

. update trove ...

}

The function Tr oveManager . r edeentCol | at er al () then halts any additional redemptions, assuming
that the last Trove was partially redeemed, and the redeemer's collateral is exhausted.

This issue can be exploited to cause a DoS attack against the redemption of multiple Troves in a single
transaction, as redeeming the first one halts execution. It is still possible to partially redeem a Trove. A
single Trove could be fully redeemed by setting
_maxBaseFeeLMAanount = Troves[_borrower].debt - BaseFeeLMA GAS COVPENSATI ON.

Moreover, an attacker could exploit this by reducing their Trove to a lower debt value than the gas
compensation. This would create a trove that is not profitable to liquidate. Note that this is not possible in
the current system since
M N_NET_DEBT = BaseFeeLMA GAS COVPENSATI ON = 0.1 BaseFeeLMAToken.

Code corrected:

The function Tr oveManager . _redeentCol | at er al Fronilrove() has been updated to deduct the
gas compensation from the debt of the Trove.

function _redeentCol | ateral Fronirove(..., _maxBaseFeeLMAamobunt, ...) {
si ngl eRedenpt i on. BaseFeeLMALot Li qui tyMat h. _m n(_naxBaseFeeLMAanount, Troves|_borrower]. debt. sub(BaseFeeLMA GAS COVPENSATI ON)) ;

}

6.10 Gas Compensation Is Not Accounted for
Correctly When Closing a Trove

(Correctness [HEN V2T Code Corrected)

When opening a trove the system mints
_BaseFeeLMAAmount - BaseFeeLMA GAS COVPENSATI ON - BaseFeelLMAFee to the user and
records _BaseFeeLMAAnount as trove's debt. When closing the trove, the user must burn

CS-HOG-007

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 30

https://chainsecurity.com

debt - BaseFeeLVA GAS COMPENSATI ON from their balance and
BaseFeeLMA GAS COMPENSATI ONis burned from the GasPool.

After opening and closing a trove the User, GasPool and FeesRouter (their beneficiary) should have the
following net balances of BaseFeeLMA tokens:

1. User: Initial_Balance - BaseFeeLMAFee
2. GasPool: BaseFeeLMA_GAS_COMPENSATION - BaseFeeLMA_GAS_COMPENSATION =0
3. FeesRouter: BaseFeeLMAFee

However, the function cl oseTr ove() burns the gas compensation from both the user and the gas pool
address:

_repayBaseFeeL MA(
act i vePool Cached,
baseFeeLMATokenCached,
nsg. sender,
debt
);
epayBaseFeel MA(
act i vePool Cached,
baseFeeLMATokenCached,
gasPool Addr ess,
BaseFeelLMA GAS COMPENSATI ON

)i

This violates the specifications that gas compensation is refunded to borrowers when closing a trove.
Furthermore, the accounting of active pool is compromised as its debt is decreased with
debt + BaseFeelLMA GAS COVPENSATI ONinstead of debt .

Code corrected:

The accounting of gas compensation has been revised in (Version 2). When opening a trove, the system
records the total amount (minted amount + fee + gas compensation) as a debt of a user. When closing
the trove, the gas compensation is withdrawn from the gas pool, while the rest of the debt (minted
amount + fee) is withdrawn from the user.

6.11 Price Feed Returns Wrong Price
(Correctness | HIENWZETIBY| Code Corrected)

The Function Pri ceFeed. fetchPrice() stores/returns the Main Oracle response when it should
return the Backup Oracle response in four cases:

CS-HOG-008

» Main Oracle is untrusted (Case 2):

return _storeGoodPrice(nai nOracl eResponse, decimals);

* Main Oracle is frozen (Case 4):

return _storeGoodPrice(nmai nOracl eResponse, decimals);

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 31

https://chainsecurity.com

» Main Oracle response is frozen and Backup Oracle is working (Case 4):

return _storeGoodPrice(nmainOracl eResponse, decinals);

» Main Oracle response is live after being previously frozen, but the response is not within 5% of
Backup Oracle response (Case 4):

_changesSt at us(St at us. usi ngBackupMai nUnt rust ed) ;
return _storeCGoodPrice(nainO acl eResponse, decinmals);

In these cases, the value is either incorrect, zero or outdated. An incorrect value can result in liquidations
not getting performed when they should or health positions getting liquidated. If the value is zero the CR
calculation that is performed on any user operations will fail, since it divides by zero (CR = coll / debt /
price).

Code corrected:

The function Pri ceFeed. fet chPri ce() now returns the Backup Oracle response in the four cases
mentioned above.

6.12 Price Feed Stores and Returns Wrong
Decimals

[Correctness JHIEH LB Code Corrected)

The Function Pri ceFeed. fetchPrice() stores/returns the price of the Backup Oracle with the
decimals of the Main Oracle when backup is live, and the oracles responses differ too much in price:

CS-HOG-009

_changeSt at us(St at us. usi ngBackupMai nUnt r ust ed) ;
return _storeGoodPrice(backupOracl eResponse, decinals);

Similarly, the function calculates the price deviation of the current and previous Backup Oracle response
with the decimals of the Main Oracle in two cases:

i f (status St at us. usi ngBackupMai nUntrust ed) {
if (
_pri ceChangeAboveMax(
backupOr acl eResponse,
prevBackupOr acl eResponse,
deci mal s

) |

if (
_backupOr acl el sBroken(backupOracl eResponse)
_priceChangeAboveMax(
backupOracl eResponse,
pr evBackupOr acl eResponse,
deci mal s

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 32

https://chainsecurity.com

)

Having two oracles with different decimals has severe consequences for the system as the stored prices
have a large error.

Code corrected:

The function fetchPrice() has been revised to use the correct decimals in the code parts listed
above.

6.13 Redemption Fees Can Be Lowered to Floor

Value
Design \VEISGI I Specification Changed
CEED GED()

CS-HOG-010

In Hedgehog's code, the redemption fee is calculated based on the proportion of collateral redeemed
relative to the total collateral locked in the system.

RedRate = RedFloor + RedBaseRate * MinuteDecayFactor™nutes + RedemptionEth/Collateral

An attacker can exploit this by inflating the system's collateral before redeeming a trove, thereby reducing
their redemption fee. The collateral can be inflated by either adjusting a trove's collateral or by adding a
new trove with a large amount of collateral. Here's a step-by-step scenario with an attacker that has an
open Trove:

1. The attackers borrow a large amount of wstETH in a flash loan and add it as collateral to their
Trove.

2. They redeem the target trove, paying a lower redemption fee due to the inflated collateral balance.

3. They remove the collateral from the trove and repay the flash loan.

Alternatively, an attacker can create a trove with the minimum debt and a large amount of collateral,
execute Steps 1-3, and then repay their debt. With a large enough flash loan, an attacker will only pay
redemption rate close to the floor rate (set to 0.5% in Hedgehog's code). The low redemption fee makes
it likely that all collateral is exhausted when the base fee is underpriced in the secondary market.

Specification changed:

A new mechanism was implemented in to forbid adding collateral to a trove via flash loans. The
contract Bor r ower Oper at i ons now limits the number of operations that modify a trove (such as open,
adjust, or close) to at most once per block. Hence, it is not feasible anymore to add collateral to a trove
and withdraw in the same transaction (required in case of flash loans).

Note that a variant of this attack (Attacker with sufficient funds can lower redemption fees) is still possible

in (Version 2),

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 33

https://chainsecurity.com

6.14 Redemption Rate Double Counts the
Redemption Share

D (7D (Version 1) CRIEIRED

The function Trover Manger.redeenCol | ateral () double counts the redemption share
(redemptionEth / Collateral) when calculating the redemption fees. First, it is added to the
redemptionBaseRate in _updat eRedenpt i onBaseRat eFr onRedenpt i on and then it is added to the
redemption rate in _get Redenpt i onFee:

CS-HOG-011

function redeenCol lateral (..) {
_updat eRedenpt i onBaseRat eFr onRedenpti on(total s. t ot al W5t ETHDr awn) ;

tot al s. Wot ETHFee _get Redenpti onFee(total s.total Wst ETHDr awn) ;

}

As fees may not exceed 100%, double counting of fees will block redemptions of more than 50% of
collateral and make redemptions considerably more expensive and thus weaken the lower peg of the
base fee token.

Code corrected:

The call path triggered by function _get Redenpti onFee() has been refactored to avoid double
counting of redemption share when computing the redemption fee:

function _get Redenpti onFee(uint W5t ETHDrawn) internal view returns (uint) {
return _cal cRedenpti onFee(get Redenpti onRate(), WSt ETHDr awn) ;

}

The function get Redenpt i onRat e computes the current fee rate and now does not depend on the
redemption share.

6.15 Withdrawing wstETH Gains to Trove Reverts
D (7D (Version 1) (XTI
CS-HOG-012

The Function St abi li tyPool . w t hdrawwst ETHGai nToTr ove() calls into
bor r ower Oper ati ons. noveWst ETHGai nToTrove() to pull collateral from the stability pool.
However, since the St abi | i t yPool does not provide any allowance to Bor r ower Qper at i ons, the
call always reverts. That will block all users from withdrawing their wstETH gains to their Trove.

Code corrected:

The function St abi li tyPool . wi t hdr awWst ETHGai nToTr ove() now approves the
Bor r ower Qper at i ons contract.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 34

https://chainsecurity.com

function w t hdraw\Wst ETHGai nToTr ove(

W5t ETHToken. approve(addr ess(borrower Operations), depositorWst ETHGi n) ;
bor r ower Oper at i ons. noveWst ETHGai nToTr ove(

neg. sender,

_upper Hi nt,

_l ower Hi nt,

deposi t or W5t ETHGaI n

)i

6.16 Wrong Conversion Rate Used in HintHelpers

D (D) (Version 1) CREIRED

The function Hi nt Hel pers. get Redenpti onHi nts() incorrectly converts a debt amount into
collateral:

CS-HOG-013

ui nt newCol | W5t ETH. sub(maxRedeerabl eBaseFeeLMA nul (_price));

The debt amount maxRedeemabl eBaseFeelLMA is in the base fee token (6 decimals), the collateral is in
W5t ETH token (18 decimals), while _pri ce stores the conversion rate for the pair BaseFeeLMA: ETH in
1 decimal. Thus, the conversion is incorrect.

(Version 2)

The codebase had been updated to use 18 decimals for the BaseFeeLMA token, and 18 decimals for the
price. Thus, the formula:

maxRedeenmabl eBaseFeeLMA. mul (_price)

returns a value of 36 decimals instead of 18, hence computing a wrong collateral amount.

Code corrected:

The codebase has been updated to divide the intermediate value
maxRedeenabl eBaseFeeLMA. mul (_price) by DECI MAL_PRECI SI ON, hence the result has 18
decimals.

ui nt newCol | WEt ETH. sub(
maxRedeenmabl eBaseFeeLMA nmul (_price). div(
DECI MAL_PRECI SI ON
)
);

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 35

https://chainsecurity.com

6.17 Adversary Can Keep Withdrawal Limit Tiny
DD (Viedium) (Version 5) (RXTXITET)

One system assumption is that once the Acti vePool holds a significant amount of funds, then the
decay of the withdrawal limit will be too fast that an attacker could keep it small over a longer period of
time without investing significant funds.

CS-HOG-072

Below we explain why this might not be true. We assume that the Acti vePool holds 20,000 WStETH
and that the attacker holds 1 WstETH. The attacker opens two troves and initially deposits the 1 WstETH
into the first one.

Each block, the attacker does the following:
» Withdraws 1 WStETH from the trove it is currently in
* Deposits 1 WStETH into the other trove

Hence, every two seconds (Base Chain Block Interval), the withdrawal limit will:
« Compute the decay accordingly to the formula
» Decrease unusedW t hdrawal Li m t by 1 WstETH due to the withdrawal
* Increase unusedW t hdr awal Li ni t by 0.5 WstETH due to the deposit

Therefore, the question is, whether the decay will be larger than 0.5 WstETH. The maximum decay in this
situation is:

(total Col | BasedLi mt -_unusedW t hdrawal Li m t)* per cent ageToCet
= (10,005 WStETH - 0 WStETH) * (2 seconds / 720 minutes)
< 0.5 WstETH

(Note that technically the used attack amounts would be slightly different to not cause any reverts, but
this has been omitted for readability.)

As the decay is smaller than the decrease introduced by the attacker, the attacker needs just 1/20,000 of
the Acti vePool funds to keep the withdrawal limit slightly above zero. The attacker only pays for
transaction costs, which are relatively small on Base chain.

Code corrected:
In (Version 6), the withdrawal limits have been removed resolving the griefing attack vector described.

6.18 Incorrect Communitylssuance Configuration
Can Break the StabilityPool
DD (Viedium) (Version 5) (XTI

In the Communi t yl ssuance contract three different parameters can be set by a privileged role that
control the issuance of HOG tokens. The St abi | i t yPool calls the Conmuni t yl ssuance contract to
calculate issuance and retrieve HOG tokens. The following could theoretically happen:

CS-HOG-073

1. Inside the Communi t yl ssuance an incorrect value is set, e.g. set HOGSuppl yCap is set to a
value ten times higher than the actual supply of HOG.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 36

https://chainsecurity.com

2. An action inside the St abi | i t yPool , like provide or withdraw, causes the St abi |l it yPool to
call i ssueHOG where the incorrect issuance will be calculated. The St abi | i t yPool will calculate
the mar gi nal HOGGai n and thereby remember how much HOG each user is entitled to. Even if the
error is recognized now, the values are already stored inside the St abi | i t yPool .

3. Whenever users use the provide or withdraw actions of the St abi | i t yPool these precomputed
HOG tokens are actually requested using Comruni t yl ssuance. sendHOG.

4. Soon, no more HOG are inside the Communi t yl ssuance and the sendHOG command reverts.

5. From now on, all provide and withdraw operations on the St abi | i t yPool will revert, and the
funds are stuck inside the St abi | i t yPool .

Code corrected:

The three parameters HOGSupplyCap™, " |SSUANCE FACTOR and total HOG ssued in
Conmuni tyl ssuance contract must now be modified in a two-step approach. For example the
HOGSuppl yCap must be be modified by first calling pr oposeHOGSuppl yCap, and the change becomes
effective after accept NewHOGSuppl yCap is called. The privileged role modifying issuance
(DISTRIBUTION_SETTER) is expected to verify that the parameters are correct before calling accept *.
Note, that this role can call the pr opose as well as accept functions. Therefore, the role could still
negatively impact the system if it becomes malicious.

6.19 Closing a Trove Does Not Update the
Withdrawal Limit
7D (Viedium) (Version 4) (CXTXLIED

The function Tr oveManager . cl oseTrove() withdraws collateral from the system. However, it does
not update the withdrawal limit accordingly. As a result, the withdrawal limit can be trivially circumvented.
Furthermore, one can inflate the limit by opening new troves, and closing them in the next block.

CS-HOG-060

Code Corrected:

In of the protocol, the function Tr oveManager . cl oseTrove() has been updated to update
the withdrawal limit accordingly.

6.20 Double Counting of Full Redemptions in
Withdrawal Limit Calculation

(D (Miedium) (Version 4) (TSR

The function TroveManager Arb. redeentol | at eral () incorrectly double counts the collateral
withdrawn by full redemptions when calculating the withdrawal limit.

CS-HOG-061

First, the amount of collateral of the (fully) redeemed trove is accounted towards the withdrawal limit in
_redeenC oseTr ove. Second the collateral of all troves redeemed is collected in the summary variable
t ot al W5t ETHDr awn that is then passed to function handl eW t hdr awl Li i t a second time.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 37

https://chainsecurity.com

function redeenCol | ateral (uint _W5t ETHDrawn) public {

| Bor r ower Qper ati ons(borrower Qper ati onsAddr ess) . handl eW t hdraw Li ni t (
total s. t ot al Wst ETHDr awn,
true

)i

As a result, the collateral withdrawn for full redemptions is overestimated by a factor of 2, leading to lower
withdrawal limits than intended.

Code corrected:
In the withdrawal limit is only updated once, at the end of the function r edeenCol | at er al .

6.21 Limit Can Exceed Active Collateral

(D) (Vistium) (Version 4) YD)

In the function Borrower Operati onsArb. handl eWthdrawal Limt (), the unused withdrawal
limit is set to the collateral in the active pool if the active pool holds less collateral than the withdrawal
limit threshold.

CS-HOG-062

i f (activePool .get Wst ETH() W THDRAW. LI M T _THRESHOLD) {

} else {
unusedW t hdrawl Li mit acti vePool . get Wt ETH() ;
}

However, when removing collateral via _adj ust Trove, the wstETH balance is only updated (in
_moveTokensAndW5t ETHf r omAdj ust ment ()) after the withdrawal limit is already set. This means
that the unusedW t hdr awal Li mi t will be set to the collateral in the active pool prior to the withdrawal
and hereby exceeding the amount of collateral after the withdrawal has been made. The same issue can
be found in the calls to function Borrower Operati onsArb. handleWthdraw Limt() in the
functions r edeentCol | ateral () and _r edeenCl oseTrove() in TroveManager Ar b.

These discrepancies can accumulate over time, severely restricting the effectiveness of withdrawal limits.

Code corrected:
In the logic of updating the unused withdrawal limit has been completely revamped.

1.I1f the active pool balance is below the withdrawal limit threshold, the function
Li qui tyMat h. _checkW t hdrawal Li ni t () returns the current collateral in the active pool.

function _checkWthdrawal Li mit(

) internal viewreturns (uint256 fullLinmt, uint256 singleTxWthdrawable) {
if (_currentTotal Coll W THDRAWAL_LI M T_THRESHOLD) {
return (_currentTotal Coll, _currentTotal Coll);

}

2. The unused withdrawal limit is then set to the ful | Li m t minus the collateral to be withdrawn.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 38

https://chainsecurity.com

function _handl eWthdrawal Li mt(
uint 256 _col | Wt hdr awal ,
bool _isLiquidation
) internal ({
(uint256 fullLimt, uint256 singleTxWthdrawabl e) Li qui tyMat h
. _checkWt hdrawal Li mt(
| ast Wt hdr awal Ti mest anp,
EXPAND_DURATI ON,
unusedW t hdrawal Li m t,
acti vePool . get W5t ETH()

unusedW t hdr awal Li mit fullLimt _col | Wt hdrawal
fullLimt _col | Wt hdrawal
0;

}

3. Functions redeentCol | ateral (), _adjustTrove(), and other related functions always call
_handl eW t hdrawal Li ni t at the end, ensuring that the total collateral used in the calculation does
not include the collateral withdrawn from the active pool.

In combination, the changes ensure that the unused withdrawal limit is below the amount of collateral in
the active pool.

6.22 Liquidations Update Withdrawal Limit in an
Inconsistent Way

(Design |CIT O NZIEE)] Code Corrected

On a liquidation collateral is moved from the active pool:

CS-HOG-063

1. to the Stability Pool to offset debt and collateral
2. to the Default Pool to redistribute debt and collateral
3. to the CollSurplusPool to store surplus collateral (optional)

4. to the caller as gas compensation

The withdrawal limit is updated on point 4 but not in the other cases.

Code corrected:

In (Version 5), the withdrawal limit is updated once at the end of the functions bat chLi qui dat eTr oves
and | i qui dat eTr oves with the total amount of liquidated collateral (including the gas compensation
given to the caller).

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 39

https://chainsecurity.com

6.23 Withdrawal Limit Reset on Collateral
Deposits

(D (Widium) (Version 4) (SRR

of the protocol introduced withdrawal limits. According to the design, each new collateral
deposit should increase the withdrawal limit by 50% of the deposit amount. However, the function
Bor r ower Oper ati onsArb. _updateWthdraw Li m t FronCol | | ncrease() resets the withdrawal
limit to 50% of the (new) active collateral:

CS-HOG-065

function _updateWthdraw Li mtFronColllncrease(...) internal {

ui nt 256 newCol | _previousCol | _col |l I ncrease;
ui nt 256 newli m t (_previousCol | 2) (_col I ncrease 2);

it (newLimt _previousColl) {

}

unusedW t hdrawl Li m t newLi mt;
}

Therefore, any minimal deposit nullifies the effect of previous withdrawals and resets the limit.

Code corrected:

In (Version 5), the function _updat eW t hdrawl Li mi t FronCol | | ncr ease has been removed, and
instead Bor r ower Oper ati ons. _acti vePool AddCol | () increases the withdrawal limit by half of the

deposit amount sent to the active pool.

function _activePool AddCol | (
| ActivePool _activePool,
ui nt _anount
) internal {
WEt ETHToken. saf eTransf er From(nsg. sender, address(_activePool), _anobunt);
acti vePool . i ncreaseBal ance(_amount) ;

unusedW t hdr awal Li m t unusedW t hdr awal Li nmi t _anount 2;

6.24 Incorrect Timeout Value in PriceFeedArb

[Medium] [Version 3] Code Corrected

The contract Pri ceFeedAr b operates on Arbitrum block numbers and the timeout for fresh prices is set
to 69 blocks, roughly 17 seconds. The timeout is lower than intended, therefore the contract
Pri ceFeedAr b would consider prices returned by BaseFeeOr acl eAr b as stale.

CS-HOG-055

Code corrected:

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 40

https://chainsecurity.com

In the timeout was updated to 1600 blocks or around 400 seconds at the current block time on
Arbitrum. Security considerations of a change in Arbitrum block time are discussed in another issue, see
Dependency on current block time.

6.25 Liquidation Price Has Wrong Decimals

(Design LT D] Code Corrected

The function Li qui tyMat h. _fi ndPri ceBel omMCR() calculates the liquidation price of a Trove from
the Minimum Collateral Ratio (MCR), the collateral and debt of the Trove as:

CS-HOG-050

function _findPriceBel oWmVCR(
uint256 _coll,
ui nt 256 _debt,
uint _ncr
) internal pure returns (uint256 price) {

price ((_coll DECI MAL_PRECI SI ON) _debt _ncr) 1;
}

Note that _coll and _debt have 18 decimals precision, so the result of the intermediary division _coll *
DECIMAL_PRECISION / _debt is a number with 18 decimals. The mcr has 18 decimals, so the result of
the division _coll * DECIMAL_PRECISION / _debt/ _mcr has 0 decimals instead of the expected 18.

Code corrected:

The codebase now multiplies the intermediary result by 1e18 before dividing by _mcr, so the result has
18 decimals.

6.26 Locking of Troves Is Longer Than Specified
(Correctness JUITIT\VSZITI)] Specification Changed

The contract Borr ower Oper ati ons implements a new check _checkAndSet Updat eBl ock() in
to restrict operations that modify a trove more than once in a single block. The specification of
the function is:

CS-HOG-051

/1 HedgehogUpdat es: new private function, that checks if there was a transaction
with a trove in the current bl ock

However, the function uses bl ock. nunber to check if a trove is being modified more than once in a
block:

function _checkAndSet Updat eBl ock(address _borrower) private {
i f (troveManager. get TroveUpdat eBl ock(_borrower) bl ock. nunmber) {
revert TroveAdj ustedThi sBl ock();

}

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 41

https://chainsecurity.com

We would like to highlight that bl ock. nunber in Arbitrum returns the estimated block in Layer-1
(Ethereum mainnet). Thus, the check above prevents transactions that modify a trove for more than one
block.

Specification changed:

Contract Borrower Operations is no longer in scope in (Version4) A new contract
Bor r ower Oper at i onsAr b has been added that will be deployed in Arbitrum and resolves the issue
above by using ar bsys. ar bBl ockNunber () to get block numbers.

6.27 Change of Issuance Curve Has Unexpected
Side Effects
7D (Viedium) (Version 1) (XIS

The issuance computed by Communi t yl ssuance. i ssueHOF) is the difference between the current
point on the issuance curve and the point at the last update (totalHOGIssued).

CS-HOG-014

uint | atestTotal HOQ ssued HOGSuppl yCap
.mul (_get Cunul ati vel ssuanceFraction())
. di v(DECI MAL_PRECI SI ON) ;
ui nt i ssuance | at est Tot al HOG ssued. sub(t ot al HOd ssued) ;

t ot al HOQ ssued | at est Tot al HOQ ssued;

An address with the DI STRI BUTI ON_SETTER role can modify the issuance curve by changing their
convergence limit (HOGSupplyCap) or their rate of convergence (ISSUANCE_FACTOR) with the
function Commruni tyl ssuance. set HOGSuppl yCap() or
Commruni t yl ssuance. set | SSUANCE FACTOR() , respectively. There is no function to modify the point
of the last update (totalHoglssued).

If the value of the new curve is lower than the previous point, then the subtraction (latestTotalHOGIssued
- totalHOGIssued) will underflow. Although only whitelisted accounts can set these parameters,
misconfigurations are possible. If such misconfigurations happen, they cause all liquidations and calls to
provide or withdraw stake from the stability pool to revert.

If the new curve is higher than the old curve at the current point in time, all additional issuance will be
consumed in the next call to issueHog.

Code corrected:

The Communi t yl ssuance. i ssueHO&F) function now returns 0 instead of causing an underflow when
the new curve is lower than before. This prevents failures in liquidations and staking:

ui nt i ssuance | at est Tot al HOQ ssued t ot al HOd ssued
| at est Tot al HOG ssued. sub(t ot al HOG ssued)
0;

A new function, Communi tyl ssuance. set Tot al HOQ ssued() has been added, to modify the
previous point on the curve (totalHOGIssued).

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 42

https://chainsecurity.com

Note that when increasing the issuance, the function setTotalHoglssued() must be called called first (or
calls to setHOGSupplyCap, setiISSUANCE_FACTOR, and setTotalHoglssued are batched). Otherwise,
an issueHog() call might use all the extra issuance before setTotalHoglssued() is called.

6.28 Chosen Values for Gas Compensation and
Minimum Debt Are Low

(Desig (T ITDIZTRY] Code Corrected

The parameters for gas compensation and minimum net debt are set in the file depl oyConfi g. ts:

CS-HOG-015

export const depl oyConfig: Depl oynent Config {

gasConp: "100000",
nm nNet Debt : " 100000",

}i

Both gasConp and m nNet Debt represent amounts in the debt token, BaseFeeLMAToken, which uses
6 decimals. Therefore, gas compensation and minimum net debt are set to low amounts, corresponding
to 0. 1 BaseFeeLMA.

Assuming a liquidation consumes 500,000 gas, the gas price on Arbitrum is about 1/5 of the base fee,
and 1le6 BaseFeeLMAToken are worth 1 base fee (6 decimals), the cost of the liquidation expressed in
BaseFeeLMAToken is:

gasCostinBaseFeeTokens = (500.000/5) * 1e6 = 100.000 * 1e6

A low minimum net debt enables gas griefing attacks by lowering the costs to create a large number of
troves. Similarly, the gas compensation is very low, and it makes liquidations less attractive, hence
increasing the risks of unhealthy troves. Troves with minimum net debt are not worth liquidating as the
reward is lower than the gas costs of executing a liquidation.

(Version 2)

The codebase had been updated to use 18 decimals for the BaseFeeLMA token. Thus, the constant
variables set in the contract HedgehogBase represent very small amounts (less than 1 BaseFeeLMA
token):

uint public constant BaseFeeLMA GAS COVPENSATI ON = 100000;

uint public constant M N_NET_DEBT = 350000000;

Code corrected:

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 43

https://chainsecurity.com

In the BaseFeeLMA GAS_COVPENSATI ON has been updated to 100.000 * 1e18. Hedgehog
considers this amount as fair compensation although it might not cover always the gas costs of
liquidations:

The gas conpensation anount is based on the ratio between L2 and Et hereum gas price.
The Hedgehog |i qui dation transaction consunmes app. 417-673K of L2 gas. The L2/L1 gas
price ratio range was estinmated between 1:8 and 1:3 (OptimismL2, Septenber 2023).

The present peak values (March 16, 2024) are app. 1:3.75. The conpensated value is
then 52K-84K (1:8 ratio) or 139K-224K (1:3 ratio) L1 gas units, equivalent to the sane
nunber of BaseFee token fractions. The 100K value is taken as a noderate rounded val ue
of the required conpensation, given that the price ratio is often nmuch | ower than the
estimat ed peaks

The M N_NET_DEBT has been changed to 50.000.000 * 1e18 or around 20.000 USD at a base fee of
100 Gwei and 4000 USD/ETH (50 mio * 100e-9 * 4000 = 20.000 USD). The minimum debt for a trove
scales linearly with the base fee. Hence, a decrease of base fee at 1 Gwei, results in a minimum debt of
200 USD (50 mio * 100e-9 * 4000 = 200 USD). Therefore, the griefing attack that inject troves in the
linked list to make user transactions such as openTrove() orredeentol | at eral () revert, are more
likely when base fee is low.

In the BaseFeeLMA GAS_ COMPENSATI ON has been increased to 300.000 * 1e18 and the
M N_NET_DEBT has been increased to 100.000.000 * 1e18.

6.29 Closing Troves Requires Borrowers Having
Larger Balance Than Needed

[Medium] [Version 1] Code Corrected

When opening a new trove, its debt is set to the gross amount of debt which includes the borrowing fee
and the gas compensation:

CS-HOG-016

function openTrove(..., _BaseFeeLMAAmount, ...) {
var s. net Debt _BaseFeeLMAANMDUNt ;
vars. conposi t eDebt vars. net Debt ;

contract sCache. troveManager . i ncreaseTroveDebt (nsg. sender, vars. conpositeDebt)
}

The gas compensation is held by the gas pool address and should be refunded to users when closing a
trove.

However, the function cl oseTrove implements a check that requires borrowers to have enough
balance to repay the whole debt (including gas compensation):

ui nt debt t r oveManager Cached. get TroveDebt (nsg. sender) ;
_requireSufficient BaseFeeLMABal ance(
baseFeeLMATokenCached,
neg. sender,
debt

)i

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 44

https://chainsecurity.com

Code corrected:

The function cl oseTr ove now deducts the gas compensation from the debt before checking the user's
balance:

ui nt debt t roveManager Cached. get Tr oveDebt (nsg. sender) ;
_requi reSuffici ent BaseFeeLMABal ance(
baseFeeLMATokenCached,
neg. sender,
debt . sub(BaseFeeLMA GAS COVPENSATI ON)

6.30 Distribution Functions in FeesRouter Use

Wrong Configs
7D (Viedium) (Version 1) (CXIYSIRT)

Functions di stri but eDebt Fee() and di stri but eCol | Fee() in the contracts FeesRout er use a
wrong formula when retrieving a fee configuration:

CS-HOG-017

FeeConfi g nenory config FeeConfigs[(((_fee 100) _debt) 5) 5];

The intermediate result ((_fee * 100) / _debt) % 5) in the formula above returns a value
between 0 and 4. Multiplying this intermediate result with 5 can produce five possibilities for the fee
percentages: 0, 5, 10, 15, 20.

This behavior is counter intuitive as for a fee percentage of 6%, 11% or 16%, the config corresponding to
the 5% range is used. While for a fee percentage of 7%, 12%, and 17%, the config for 10% is used.

Code corrected:

A new internal function _get Pct Range has been added in that computes the closest multiplier
of 5 given an amount of debt and the respective fee.

6.31 Function _getUSDValue Computes Wrong
Value

[Medium] [Version 1] Specification Changed

The function Bor r ower Oper at i ons. _get USDVal ue uses the following formula to compute the return
value:

CS-HOG-018

function _getUSDVal ue(uint _coll, uint _price) internal pure returns (uint) {
ui nt usdVal ue _price.mul (_coll).div(DEC MAL_PRECI SI ON) ;

@ Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 45

https://chainsecurity.com

return usdVal ue;

}

Collateral amount _col | is in W5t ETH while _pri ce is for the pair BaseFeeLMA: ETH, hence the
returned value does not represent the value of collateral in USD. This function is unused in the current
version of the codebase.

Specification changed:

The function Bor r ower Oper at i ons. _get USDVal ue() function has been deleted from the codebase.

6.32 Gas Compensation Not Accounted on
Redemption Hints

[Medium] [Version 1] Code Corrected

The function Hi nt Hel pers. get Redenpti onHi nts() does not account correctly for the gas
compensation linked to a trove. The net debt of trove is computed as follows:

CS-HOG-019

ui nt net BaseFeelLMADebt _get Net Debt (t roveManager . get TroveDebt (current Troveuser))
.add(troveManager . get Pendi ngBaseFeeLMADebt Rewar d(current Troveuser)) ;

Differently from Liquity, function _get Net Debt () does not subtract the gas compensation, hence it
remains included in the amount net BaseFeeLMADebt .

In case the trove should be closed during the redemption, the gas compensation is paid by the redeemer
instead of refunded from the gas pool:

i f (net BaseFeeLMADebt remai ni ngBaseFeeLMA) {

} else {
renmai ni ngBaseFeeLMA = renai ni ngBaseFeelLMA sub(
net BaseFeelLMADebt

),

Code corrected:

The function HedgehogBase. get Net Debt () has been revised in to subtract the gas
compensation from a debt.

6.33 Inconsistent Definition of Redemption Share

[Medium] [Version 1] Code Corrected

The Tr oveManager contract in the codebase defines the redemption share inconsistently across two of
its functions.

CS-HOG-020

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 46

https://chainsecurity.com

In the function Tr oveManager. _cal cRedenpti onRat e(), the redemption share is defined as the
division of redeemed collateral by the sum of collateral in the active pool and the default pool.

redemptionShare = RedemptionEth/(CollateralinActivePool + CollateralinDefaultPool)

However, in the function Tr oveManager. updat eRedenpti onBaseRat eFr onRedenpti on(), the
redemption share is calculated differently. Here, it is defined as the proportion of the redeemed collateral
to the collateral in the active pool only:

redemptionShare = RedemptionEth/CollateralinActivePool

The NatSpec comments above the function Tr oveManager . _cal cRedenpti onRate() imply the
identical alternate formula that ignores the collateral in the default pool.

This inconsistency in the redemption share definition could lead to external parties misunderstanding the
redemption mechanism and the calculation of the redemption rate. It is recommended to harmonize the
definition of the redemption share in both functions and to update the NatSpec comments accordingly.

Code corrected:

The function Tr oveManager. _updat eRedenpt i onBaseRat eFr onRedenpti on() was updated to
calculate the redemption share as the division of the redeemed collateral by the sum of collateral in the
active pool and the default pool.

redemptionShare = RedemptionEth/(CollateralinActivePool + CollateralinDefaultPool)

The NatSpec comments above the function were also updated to reflect the corrected formula.

The function Tr oveManager. cal cRedenpti onRat e() no longer adds the redemption share to the
redemption rates, since the share would be double counted (see: Redemption rate double counts the
redemption share).

6.34 Mismatch of NICR Specifications With
Implementation

(Medium] [Version 1] Code Corrected

The NatSpec description of the constant Nl CR_PRECI SI ONin library Li qui t yMat h states:

CS-HOG-022

This value of 1e20 is chosen for safety: the NNCRw Il only overflow for nunerator > ~1e39 WSt ETH

The implementation of function _conput eNom nal CR computes the nominal individual collateralization
ratio as follows:

return _coll.ml (NIl CR_PRECI SI ON) . di v(_debt);

The amount _col | isin 18 decimals (WStETH), while _debt is in 6 decimals (BaseFeeLMA), hence the
result is in 30 decimals. This conflicts with the specification of Nl CR_PRECI S| ON.

Code corrected:

The debt token (BaseFeeLMA) has been changed to use 18 decimals. Therefore _debt and the result of
the multiplication are in 18 decimals places. This is in line with the specification of Nl CR_PRECI SI ON.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 47

https://chainsecurity.com

6.35 Price Feed Compares Timestamp to
Blocknumber

[Medium] [Version 1] Code Corrected

The Function PriceFeed._backupOr acl el sBroken() compares the bl ock. nunber of the
response to the current bl ock. ti mest anp to determine if the backup oracle is broken.

CS-HOG-024

if(

_response. bl ockNurber 0
_response. bl ockNurber bl ock. ti mest anp
) A
return true;
}
i f (_response. answer 0) {
return true;
}

return false;

As the bl ock. ti mest anp is always larger than the bl ock. nunber (incremented every 12 seconds),
the function returns false for block numbers in the future. Note that bl ock. nunber returns an estimate
of the L1 block number on Arbitrum.

Code corrected:

The function PriceFeed. backupOracl el sBroken() has been updated to compare the
response. bl ockNunber to the current bl ock. nunber instead of the bl ock. ti nest anp.

6.36 PriceFeed Does Not Check if Main Oracle
Recovers

(D (Wiedium) (Version 1) TSR

The function Pri ceFeed. f et chPri ce() does not check if the main oracle has recovered when prices
are retrieved from the backup oracle (Case 2):

CS-HOG-025

i f (status St at us. usi ngBackupMai nUntrusted) {
if (
_pri ceChangeAboveMax(
backupOr acl eResponse,
prevBackupOr acl eResponse,
deci mal s

)

) A
_changeSt at us(St at us. bot hOr acl esUnt r ust ed) ;

return | ast GoodPri ce;

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 48

https://chainsecurity.com

}

In case the main oracle recovers and returns a similar price to backup, but the backup oracle reports two
prices that deviate more than allowed, the code marks both oracles as untrusted and returns the last
stored price.

Code corrected:

The function f et chPri ce() has been revised to first check if the main oracle has recovered (Case 2)
by performing later the checks in the code snippet above.

6.37 Redemption Share Is Rounded to Zero
(Design [(TXTTCLETIBY Specification Changed)

The redemption rate is calculated based on the share of collateral that is redeemed:
RedRate = RedFloor + RedBaseRate + RedemptionEth/Collateral

CS-HOG-026

In the function Tr oveManager . _cal cRedenpt i onRat e(), the share of collateral is rounded to zero in
the intermediate calculation
_redenptionCol | .div(activePool . get Wst ETH() + defaul t Pool . get W5t ETH()) .

Both the numerator and denominator have 18 decimals and the denominator is always larger than
numerator. As a result of the rounding error, the redemption rate does not increase when large amounts
of collateral are redeemed, and large amounts of Troves can be redeemed against during base fee
spikes.

Specification changed:

The function Tr oveManager . _cal cRedenpti onRat e() no longer adds the redemption share to the
redemption rate (see: Redemption rate double counts the redemption share).

6.38 Unusual Decimals Used for Values in
StabilityPool
(Correctness [ZTIT)WCETTY Code Corrected)

The debt token BaseFeeLMA in Hedgehog uses 6 decimals, which has side effects in the calculations in
the contract St abi | i t yPool . Several state variables store values in unusual decimals that deviate from
Liquity and are not properly documented.

CS-HOG-028

Although we did not identify concrete issues related to decimals in the formulas used in StabilityPool, the
specifications should be extended to clarify the intended decimals for variables.

For instance, the values stored in mappings epochToScal eToSum and epochToScal eToG use 48
decimals, while memory variables HOGPer Unit St aked, W5t ETHGai nPer Unit St aked and
BaseFeeLMALossPer Uni t St aked use 30 decimals.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 49

https://chainsecurity.com

Code corrected:

The debt token BaseFeeLMA has been revised to use 18 decimals of precision. This removes the side
effects, and the state variables are stored in the same decimal numbers as the specification.

6.39 Wrong Value Used to Calculate the
Borrowing Rate With Decay
(Correctness | IZTITNVITIRY Code Corrected)

The function Tr oveManager . get Bor r owi ngRat eW t hDecay() incorrectly calculates the borrowing
rate of a Trove. It uses the decayed redemption base rate instead of the decayed borrowing base rate.

CS-HOG-029

function get Borrow ngRat eWt hDecay(
uint i ssuedBaseFeelLNVA
) public viewreturns (uint) {
return
_cal cBorrow ngRat e(
_cal cDecayedRedenpti onBaseRat e() ,
_i ssuedBaseFeelLNA

}

While this function is not directly used by any contract, it can be utilized by front ends to calculate the
maximum fee a user is willing to pay for borrowing baseFeeLMA tokens.

If the value returned by _calcDecayedRedemptionBaseRate() is lower than the value returned by
_calcDecayedBorrowingBaseRate(), the expected borrowing rate will be lower than possible. This could
lead to a user selecting a value for the maximum fee that is too low, causing borrowing operations to
revert.

Code corrected:

The function get Bor r owi ngRat eW t hDecay() has been revised to use the decaying borrowing base
rate:

return _cal cBorrow ngRat e(_cal cDecayedBorrowBaseRate(), _issuedBaseFeelLM) ;

6.40 Collateralization Ratio Is Rounded Down

(Desig (EDIEERI0] Code Corrected)

The function Li qui tyMat h. _conput eCR() rounds down the result of the intermediate calculation,
since it divides the collateral by the debt before multiplying with DECI MAL_PRECI SI ON again.

CS-HOG-084

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 50

https://chainsecurity.com

function _conput eCR(
uint _coll,
uint _debt,
uint _price
) internal pure returns (uint) {
It (_debt 0) {
ui nt newCol | Rati o (((_coll DECI MAL_PRECI S| ON) _debt)
DECI MAL_PRECI SI ON) _price;

return newCol | Rati o;
}

el se {

return 2 256 1;

}

As a result _conput eCR calculates a result that is too small. The relative error is small based on current
base fees. However theoretically, the error is such that a trove could be liquidated if the correct CR is
1500000000000000001, because it is incorrectly computed as 1499999999500000000.

Code corrected:

In (Version 7), the precision of function conput eCR has been increased by multiplying the collateral with
DECI MAL_PRECI SI ON* * 2 before dividing by the debt.

Note that the intermediate computation can theoretically overflow, but for that to happen
_coll > 10**77 / 10**36 = 10**41 (10**77 is roughly the limit of uint256). A collateral value of
10**41 would imply that the system holds 10**23 WStETH. However, currently there are only roughly
10**8 ETH in existence.

6.41 Adversary Can Slow the Recovery of
Withdrawal Limit
EZIID (Low) (Version 5) (XX

Once the withdrawal limit is small, an adversary can slow down its recovery by simply withdrawing a
single wei of collateral in each block. Hence, the collateral requirement for the attacker is negligible. The
attacker pays for transaction costs of the withdrawals. Keep in mind that transaction costs are fairly low
on Base chain. Below we have simulated an example where the unusedW t hdr awal Li ni t drops to O
and the Act i vePool has a balance of 20,000 WstETH:

CS-HOG-074

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 51

https://chainsecurity.com

le22

1.0 { —— Regular
Slowed

unusedWithdrawalLimit

0.0

0 10000 20000 30000 40000
Time [seconds]

As you can see, the adversary can roughly half the recovery of the withdrawal limit over the current
recovery window of 12 hours compared to regular execution.

Code corrected:
The withdrawal limits have been removed in (Version 6). Hence, the issue is resolved.

6.42 Outdated Specification for
handl eWt hdrawal Li mt

Correctness JEWERRI Code Corrected)

The comment before the function _handl eW t hdr awal Li mi t inside the Borr ower Oper ati ons is
outdated. In particular, it mentions specification items like a Condition Check
When Collateral is Added to the System These items do not correspond to the current
specification.

CS-HOG-076

Code corrected:
The withdrawal limit has been removed in (Version 6). Hence, the issue is resolved.

6.43 Precision Issue in Withdrawal Limit
Calculation

(Coreectness YRR Code Corrected)

To calculate the withdrawal limit the code is using the following calculation:

CS-HOG-077

ui nt 256 DENOM NATOR = 100000;

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 52

https://chainsecurity.com

ui nt 256 m nut esPassed bl ock.tinmestanmp - _last Wt hdrawTi mest anp;

ui nt 256 percent ageToCet m nut esPassed > _expandDurati on
DENOM NATOR
(m nut esPassed DENOM NATOR) _expandDur at i on;

addi t i onFr omNewCol |
((total Col | BasedLi mt _unusedW thdrawal Limt)
per cent ageToCet)
DENOM NATOR;

Note that in _expandDur at i on is 720 minutes and hence has a value of 43200. The issue is
that the per cent ageToGet can have a fairly big rounding error. In case only two seconds have passed
since the last calculation (which is the current block interval of Base chain), then the per cent ageToGet
will be 4. This is due to the chosen precision, when the correct value would have been roughly 4. 63.
Hence, the percentageToGet is off by roughly 14%. Therefore, also the subsequent calculation of
addi ti onFr omNewCol | will be off by roughly 14% and the withdrawal limit will recover slower than it
was intended.

Code corrected:
The withdrawal limits have been removed in (Version 6). Hence, the issue is resolved.

6.44 Unclear Specification Regarding Oracle
Decimals

(Design {(FTOZZ00)] Specifcation Changed)

The BaseFeeOr acl e serves to inform the system about mainnet BaseFee values. Its documentation
says:

CS-HOG-078

A customoracle that's used to feed real world (LogMA50(BaseFeePer Gas) Wt ETH / ETH rati o)
val ue to the system onchain

i nt 256 answer ;

uint 8 public constant decinmals 18;

Reading this suggests that if the LogMA50(BaseFeePer Gas) were 20 GigaWei and the
Wst ETH / ETH rati o would be 1.1, then the feed would have a value of 22 * 10**9 * 10**18.
This would report the logarithmic BaseFee with a precision of 18 decimals.

However, according to our understanding, the feed would have the value 22 * 10**9. Hence, the
specification should be updated to avoid incorrect integrations.

Specification changed:
The comment has been clarified.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 53

https://chainsecurity.com

6.45 Withdrawal Limit Function Has
Discontinuities

(Desizn (FZEI0)] Code Corrected

The withdrawal limits have been corrected to be more smooth in (Version 5). However, the withdrawal limit
function still has some discontinuities close to the limit:

CS-HOG-079

1. If the balance is below the threshold (currently 10 ETH), full withdrawals are possible, regardless of
the unusedWithdrawalLimit.

2. If the activePool balance is slightly above the threshold, weird behavior can happen: If the
activePool holds 12 ETH and the unusedWithdrawalLimit is 0, then the withdrawal of 1 ETH wiill be
blocked, but the withdrawal of 2 ETH will be allowed.

3. If the activePool balance is between threshold and threshold * 2, then the activePool can be
emptied in two steps irrespective of the value of unusedWithdrawalLimit. Concretely, if the balance
is 20 ETH and the unusedWithdrawalLimit is O, it is allowed to withdraw 10 ETH and directly 10
ETH again.

Code corrected:
The withdrawal limits have been removed in (Version 6). Hence, this issue is resolved.

6.46 Magic Value for Expand Duration
D (Low) (Version 4) (CTYSITED)

The contract Bor r ower Qper ati onsArb uses magic value 720 minutes in
_updateWthdrawl Li mit FronCol | I ncrease and set Addresses instead of referring to the
constant EXPAND_DURATI ON of the same value. This makes the code harder to read and maintain.

CS-HOG-067

Code corrected:
The magic value of 720 minutes has been replaced by the constant EXPAND DURATI ON of the same

value in (Version 5).

6.47 Missing Event When Changing Withdrawal
Limit
(Correctness | ETINZZRITRD] Code Corrected)

In contract Borrower OperationsArb the functions _handleWthdraw Linmt() and
_updat eWthdraw Li m t FronCol | I ncr ease() do not emit an event when updating the withdrawal
limit or the time of the last withdrawal limit update.

CS-HOG-068

This can make it hard for external users to know the current withdrawal limit or its change over time.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 54

https://chainsecurity.com

Code corrected:

In (Version 5), the event WithdrawalLimitUpdated has been added. This event is emitted whenever the
withdrawal limit is updated by the functions _handleWithdrawalLimit() and _activePoolAddColl().

6.48 Withdrawal Threshold Can Be Circumvented

by Splitting Transactions
(Design [(EDIERIT)] Code Corrected)

Code comments in the function Bor r ower Qper at i onsArb. _handl eW t hdrawal Li mi t () state that
a single transaction should only be able to withdraw 80% of the withdrawable amount. However, a user
can bypass this restriction by splitting the withdrawal of collateral across multiple Troves. By withdrawing
80% of the remaining withdrawable amount in each transaction, a user can effectively withdraw nearly all
available collateral in the system. For example, with just 4 Troves, a user can withdraw 1 - (1 - 0.8)*4 =
99.84% of the limit.

CS-HOG-069

Code corrected:
The withdrawal limits have been removed in (Version 6). Hence, the issue is resolved.

6.49 Unnecessary Limitation When Opening a
Trove

D (Lo (Version 2) XD

The function Bor r ower Oper at i ons. openTrove() enforces the check:

CS-HOG-053

i f (_BaseFeeLMAAnount var s. BaseFeeLMAFee BaseFeeLMA GAS COWMPENSATI ON) {
revert ("BO Fee exceeds gain");

}

In (Version 2, the gas compensation is not included in _BaseFeeLMAArmount , hence the check above
sets an unnecessary limit.

Code corrected:
The check has been changed to enforce that

i f (_BaseFeeLMAAnmount vars. BaseFeeLMAFee) {
revert ("BO Fee exceeds gain");

}

Note that BaseFeeLMAFee can be at most _BaseFeeLMAAnount , since it is calculated in the previous
step as:

BaseFeeLMAFee = BaseFeeLMAAmount* maxFeePercentage

and maxFeePer cent age can be at most 100%.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 55

https://chainsecurity.com

6.50 Event BorrowBaseRateUpdated Is Emitted
Twice

(Coreectness YR Code Corrected)

When an asset is borrowed, the Bor r owBaseRat eUpdat ed event is triggered twice.

CS-HOG-030

First, it is emitted in Tr oveManager . decayBaseRat eFr onBor r owi ng() and the decayed old base
rate is logged. Second, it is emitted in Tr oveManager . updat eBaseRat eFr onBor r ow ng() to log the
updated borrow base rate.

Since the deprecated rate is logged first, external integrators might consume outdated data.

Code corrected:

The Bor r owBaseRat eUpdat ed is now emitted only once in
Tr oveManager . updat eBaseRat eFr onBor r owi ng() .

6.51 Excess Fee Distribution in FeesRouter

(Correctness J OB Code Corrected)

The function FeesRout er. di stri but eDebt Fee() divides the fee between three addresses and
settles any rounding error with address A.

CS-HOG-031

function distributeDebt Fee(

ui nt 256 t ot al Anobunt s anount A anount B anount C
i f (total Anmbunts _fee) {

} else if (total Anbunts _fee) {
anount A = anount A + total Anbunts _fee;

}

However, if the total amount of distributed fees is higher than the generated fee, the rounding error will be
added to the amount sent to address A instead of being deducted from it. This doubles the rounding
error.

The same problem exists in the function FeesRout er . di stri but eCol | Fee() .

Code corrected:

Both functions di stri but eDebt Fee() and di stri but eCol | Fee() have been revised to settle the
error caused from rounding down in _cal cul at eAnmount () with address A:

if (total Anounts _fee) {

anount A = anmount A + fee t ot al Anmount s;

}

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 56

https://chainsecurity.com

6.52 Function findPriceBelowMCR Can Be
Improved

(Design \(EIZZZTRY] Specification Changed)

The function Li qui t yMat h. _fi ndPri ceBel omMCR() lacks clear specifications and is called only from
external functions. _fi ndPri ceBel oWMCR() takes as input a collateral amount _col | , debt amount
_debt, a starting price _st art Pri ce, and a collateralization ratio _ntr . The function uses an iterative
method to find the target price such that the CR of a position with collateral _col | and debt _debt
matches the input _nctr .

CS-HOG-032

The function could be improved if using an analytical solution instead of the iterative one.

Specification changed:
The function now uses an analytical solution to find the target price.

6.53 Immutable Parameters Should Be Constants

(Correctness J TR Code Corrected)

The accounting of the core contracts works only if the system-wide parameters are equal among all
contracts. Furthermore, parameters such as minimum collateralization ratio (MCR) or critical
collateralization ratio (CCR) are predefined and should not change on deployment. Therefore, the state
variables BaseFeeLMA_GAS COMPENSATI ON, M N_NET_DEBT and CCR in the contract HedgehogBase
should be constants.

CS-HOG-033

Code corrected:

The listed variables are now declared as constants in the contract HedgehogBase.

6.54 Incomplete Error Message

(D (Low) (Version 1) ISR

The function _r equi reCal | er | sBOor Tr oveMor SPor FRout e() in Acti vePool does not include the
fee router in the error message:

CS-HOG-034

ActivePool: Caller is neither BorrowerQperations nor TroveManager nor StabilityPool

Code corrected:
The error message has been updated to include the fee router:

@ Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 57

https://chainsecurity.com

ActivePool: Caller is neither BO nor TM nor FRout er

6.55 Incorrect Validation of Repayments

(Correctness TR Code Corrected)

The internal function _r equi r eVal i dBaseFeeLMARepaymnent in Bor r ower Qper at i ons should limit
debt repayments in a trove to its current debt minus gas compensation. However, the function does not
consider the gas compensation, hence permitting larger repayments:

CS-HOG-036

require(
_debt Repaynent _current Debt ,
"Borrower Ops: Amount repaid nmust not be larger than the Trove's debt™

)

Note that if the gas compensation is larger than minimum net debt, the consequences of this issue are
severe and could break redemptions. An attacker can lower their debt below
BaseFeeLMA GAS_COVPENSATI ON and a deduction of the gas compensation from user debt will
underflow in Tr oveManager . _r edeentCol | at er al Fromlrove() .

Code corrected:
The gas compensation is now removed from the debt repayment:
require(

_debt Repaynent _current Debt . sub(BaseFeeLMA GAS COVPENSATI ON) ,
"Borrower Ops: Amount repaid must not be larger than the Trove's debt™

6.56 Initial Stake Rounds Down to Zero

(D (Cow) (Version 1) G

The function StabilityPool. get ConpoundedSt akeFr onSnapshot s() calculates the
compounded stake of a trove based on an initial stake and a snapshot. The function implements an
if-condition to check if the compounded stake is less than a billionth of the original stake and should
return O if it is the case:

CS-HOG-037

i f (conpoundedSt ake initial Stake.div(1e9)) {
return O;

}

However, given that initial Stake uses 6 decimals (BaseFeeLMA), the result of
i nitial Stake. di v(1e9) rounds down to zero for stakes smaller than 1_000 * 10**6.

Code corrected:

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 58

https://chainsecurity.com

BaseFeelLMA token uses 18 decimals in (Version 2), which resolves the issue described above.

6.57 Missing Event When Increasing Balance

D (Lo (Version 1) CIXTTD)

The function Stabi | i tyPool . _i ncreaseBal ance() does not emit the event
St abi I i t yPool W6t ETHBal anceUpdat ed when updating the wstETH balance. This makes it hard for
integrators and dApps to track the wstETH balance of the Stability Pool.

CS-HOG-039

Code corrected:
The function _i ncr easeBal ance() has been updated to emit the event.

6.58 Missing Sanity Checks
7D (Low) (Version 1) (AL

» The function Pri ceFeed. _backupOracl el sBroken() does not check that r oundl d is non-zero
and price is positive, which is different from the checks performed for the main oracle.

CS-HOG-040

* The function FeesRouter. set Addresses() does not check for non-zero addresses for
parameters _bor r ower sCp and _t r oveManager .

In (Version)

» The function Pri ceFeedArb. backupOr acl el sBroken() does check that price is non-zero, but
not that it is positive.

In (Version 5)

The contract Pri ceFeedAr b has been removed from scope.

Code corrected:
The missing sanity checks have been added to the contracts Pri ceFeed and FeesRout er in (Version 3),

6.59 Misleading Variable Name in
BorrowerOperationsArb

[Informational] [Version 4]

The temporary variable si ngl eTxW t hdr awabl e in function
Bor r ower Oper ati onsArb. _handl eWthdraw Li m t () has a misleading name since it represents
the amount of collateral in a single call and not transaction. Multiple withdrawal requests removing the
collateral from multiple troves can be batched in a single transaction.

CS-HOG-070

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 59

https://chainsecurity.com

Code corrected:

The relevant function has been removed. Hence, this finding is resolved.

6.60 Misleading Variable Name in LiquityMath
[Informational] [Version 4]

The local variable m nut esPassed in _checkW t hdraw Li m t is denominated in seconds and not
minutes as the name suggests.

CS-HOG-071

Code corrected:
The relevant function has been removed. Hence, the issue is resolved.

6.61 Withdrawal Limit Does Not Take Collateral
From Redistributions Into Account

[Informational] [Version 4]

Withdrawal limits are calculated based on the collateral locked in the system. However, only the collateral
in the active pool is considered. Collateral from liquidated troves that has been redistributed to other
troves is not included. Instead, this redistributed collateral is locked in the default pool.

CS-HOG-081

When users adjust their trove, they realize their pending rewards, moving collateral from the default pool
to the active pool. However, this does not immediately increase their withdrawal limit; instead, the limit
gradually increases through the recovery mechanism.

Code corrected:

This finding is resolved, as withdrawal limits have been removed.

6.62 Remaining ToDos
[Informational] [Version 3]

The following ToDo comment is present in contracts Tr oveManager and Tr oveManager Ar b:

CS-HOG-058

HEDGEHOG UPDATES

1) Now passi ng _cal cDecayedBorrowBaseRate i nstead of _cal cDecayedBaseRate
function to cal culate the decayed borrowBaseRate

TODO Wite test

Code Corrected:
The TODO has been removed.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 60

https://chainsecurity.com

6.63 Gas Optimizations

(Informational] [Version 1]

1.

CS-HOG-042

Function HOGToken. _transfer () redundantly checks that reci pi ent is not address zero,
which is already checked in external functions t ransfer () andtransferFron().

2. The state variable f eesRout er in contract BaseFeeLMAToken can be declared as immutable.

10.

11.
12.
13.

. The function BaseFeeOr acl e. f eedBaseFeeVal ue() could save a SLOAD operation by setting

| at est Round to r ound.

. The check

_BaseFeeLMAAmDunt <= vars. BaseFeeLMAFee + BaseFeeLMA GAS COVPENSATI ON in
Bor r owOper at i ons. openTr ove() can be moved up to fail early.

. Function _requireCall erl sActivePool () in the contract Def aul t Pool remains unused in

the codebase.

. The state variable f eeCount in the contract FeesRout er is unused.
. Several contracts inherit Saf eMat h library although solidity version 0. 8. 19 is used.

. Function St abi |'i t yPool . wi t hdr aw\6t ETHGai nToTr ove() triggers redundant execution of

get Deposi t or W6t ETHGai n() in its internal function calls.

. The state variable | SSUANCE_FACTCR is set upon declaration and then written again in the

constructor of Comruni t yl ssuance.

Event BaseFeeLMATokenBal anceUpdat ed in the contract BaseFeeLMAToken remains unused
in the codebase.

The constant BETA in the contract Tr oveManager remains unused in the codebase.
The constant ONE_YEAR | N_SECONDS in the contract HOGToken remains unused.
The immutable BOOTSTRAP_PERI CDin the contract Tr oveManager can be defined as constant.

(Version 3)

14.

Contract St abi | i t yPool inherit Li qui t ySaf eMat h128 library although solidity version 0. 8. 19
is used.

(Version 4)

15.

Function Bor r owOper at i onsArb. _adj ust Trove() could use the boolean
vars. i sCol I I ncrease to check if collateral has been withdrawn.

16. Function BorrowQper ati onsArb. _updat eW t hdraw Li nit FronCol | | ncrease() could

17.

use the value of newCol | to calculate newLi mit.
The local variable DENOM NATORin _checkW t hdr awl Li mi t could be defined as constant.

18. Function Bor r ower Oper ati onsArb. _handl eWthdraw Limt() calls redundantly

get W5t ETH() in the active pool.

Code corrected:

S

Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 61

https://chainsecurity.com

The optimizations were implemented.

6.64 Incorrect Interfaces

[Informational] [Version 1]

The function set Addr esses defined in the interfaces | Communi t yl ssuance,
| Borr ower Oper ati ons, | Col | Surpl usPool, | StabilityPool, and | TroveManager accepts
fewer arguments than their respective implementations in Conmuni tyl ssuance,
Bor r ower Oper at i ons, Col | Sur pl usPool , St abi | i t yPool , and Tr oveManager .

CS-HOG-043

To maintain consistency between an interface and its corresponding contract, it is considered best
practice to have the contract inherit its interface.

Code corrected:
The listed contracts have been updated to inherit the respective interfaces.

6.65 Misleading Variable Name in BaseFeeOracle

[Informational] [Version 1]

The struct Response in contract BaseFeeOr acl e has a variable named cur r ent Chai nBN. This
variable is set to bl ock. nunber in function f eedBaseFeeVal ue(). However, bl ock. nunber in
Arbitrum returns the estimated Layer 1 block number, which is different from the block number in the
current chain as the name suggests.

CS-HOG-044

A more detailed description of bl ock. nunber can be found in the official docs.

Code corrected:

A new contract BaseFeeOr acl eAr b was introduced in that stores Arbitrum block numbers in
the variable cur r ent Chai nBN.

6.66 Misleading Variable Name in FeesRouter

[Informational] [Version 1]

The input argument _debt in function FeesRout er . di stri but eCol | Fee() is misleading. The input
argument represents a collateral amount.

CS-HOG-045

Code corrected:

The variable has been renamed as _col | .

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 62

https://web.archive.org/web/20240403115741/https://docs.arbitrum.io/build-decentralized-apps/arbitrum-vs-ethereum/block-numbers-and-time
https://chainsecurity.com

6.67 Misleading Variable Name in TroveManager

[Informational] [Version 1]

The temporary variable redeenedBaseFeeLMAFr act i on in function
TroveManager . _updat eRedenpt i onBaseRat eFr onRedenpti on() has a misleading name. The
variable r edeenedBaseFeeLMAFr act i on is set to the fraction of collateral that is redeemed and not
the share of BaseFeeLMAToken redeemed.

CS-HOG-046

Code corrected:

The variable has been renamed to r edeenedCol | Fract i on which is in line with the amount of the
token it stores.

6.68 Vulnerable Dependency
[Informational] [Version 1]

The Hedgehog's contract makes use of the OpenZeppelin Contracts Library (Version 4.9.3) with a known
vulnerability. More details can be found here: https://github.com/advisories/GHSA-9vx6-7xxf-x967

CS-HOG-049

While the contracts in scope do not use the vulnerable function, it is considered best practice to upgrade
to a patched version of the library.

Code Corrected:

The dependency has been upgraded.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 63

https://github.com/advisories/GHSA-9vx6-7xxf-x967
https://chainsecurity.com

7 Informational

We utilize this section to point out informational findings that are less severe than issues. These
informational issues allow us to point out more theoretical findings. Their explanation hopefully improves
the overall understanding of the project's security. Furthermore, we point out findings which are unrelated
to security.

7.1 Incorrect Comments About Subsequent Base
Fee LMA Prices

(Informational] [Version 5]

CS-HOG-082

The MAX_PRI CE_DEVI ATI ON_PERCENTAGE_FROM PREVI QUS_ROUND is currently set to 17.6% (176)
in the code. According to the code comments, the oracle triggers a price updates as soon as the price
deviates by more than 5%. Thus, Hedgehog expects that the price can change by 12.5% between two
updates leading to a maximum deviation of 17.6%.

uint public constant MAX_PRI CE_DEVI ATI ON_PERCENTAGE_FROM PREVI QUS_ROUND = 176;

Yet, if the Base Fee LMA token could increase by 12.5% in this scenario, then a threshold of 17.6%
would not be enough, since deviations are multiplied and not added together. Consider the case in which
the previous oracle price is 1 Gwei, and the current price is 1.0499 Gwei (just below the 5% threshold).
Then the new price would be:

P=1.0499%1.1250=1.181>1.176

However, the scenario outlined is not possible, as the current specification of the LMA price of the base
fee would not allow it. The LMA base fee for block t is calculated as the logarithmic moving average of
the base fee over the last 50 blocks:

49
Z baseFee;_; X w;

LMA, ==
2w

In this formula, the smallest weight is assigned to the most recent block, while the largest weight is
assigned to the oldest block within the window. Weights are defined as:

wei=In(t+1—i)

So in the calculation of the Base Fee LMA at block 60, the base fee at block 60 has the smallest weight,
and the base fee at block 11 has the largest weight:

For the Base Fee LMA to increase by 12.5% from block 60 to block 61, the base fee would need to
increase by 12.5% in block 12 to block 61:

n—1
Z 1.125 x baseFee;_; X w;
baseFee; 1 =1.125 X baseFee; = =2

len—1

Wi
i=0

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 64

https://chainsecurity.com

Note that blocks 12 to 60 not only affect the Base Fee LMA at block 61, but also the LMA at previous
block 60. The primary differences between the LMA's at block 60 and block 61 are that block 11 is
included only in block 60's LMA, and block 61 is included only in block 61's LMA.

4

weight

block

\J

As illustrated in the graph above, the weight of any single block is small relative to the aggregate weights,
meaning a 2 observation difference is not enough to change the value significantly. Hence, the base fee
at block 60 itself would also need to be approximately 12.5% higher than the base fee at block 59. Such
an increase would violate the assumption that the price deviation remains within the 5% threshold, since
any deviation exceeding 5% would immediately trigger an oracle price update, resetting the deviation to
0%. Note that if the weighting scheme is altered - for instance, by a huge weight to the last block — the

contribution of a single block (i.e. block 11) could become large enough to allow the Base Fee LMA to
increase by 12.5% in this scenario.

7.2 Incorrect Error Message in Recovery Mode
[Informational] [Version 5]

CS-HOG-080

In Hedgehog's code recovery mode has no effect on the amount of borrowing fees charged. However,
function Bor r ower Oper at i ons. _r equi r eVal i dVaxFeePer cent age has a special case in recovery
mode allowing a user to set a max fee lower than the fee floor in recovery mode instead of reverting.

function _requireVali dvVaxFeePer cent age(
ui nt _maxFeePer cent age,
bool _isRecoveryMde
) internal pure {
i f (_isRecoveryMode) {
require(
_maxFeePer cent age DECI MAL_PRECI SI ON,
"Max fee percentage nust |ess than or equal to 100%
);
} else
require(

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 65

https://chainsecurity.com

_maxFeePer cent age BORROW NG_FEE FLOOR
_maxFeePer cent age DECI MAL_PRECI SI ON,
"Max fee percentage nmust be between 0.5% and 100%

Ik
}
Note that the execution will still revert later during the execution of _r equi r eUser Accept sFee, but the
error message will not be as informative as it could. The error message will not reflect whether the user

passed an incorrect fee value (below the fee floor) or if the user passed a fee value that is lower than the
current borrowing fee.

7.3 Base Fee Oracle Is Incompatible With

Chainlink Interface
(Informational] [Version 1]

CS-HOG-041

The contract BaseFeeOr acl e uses similar function names as Chainlink but it is not compatible with
Chainlink's interface. For instance, the declaration of function get RoundDat a() is:

functi on get RoundDat a(ui nt 80 _roundld) public view returns (int256, uint256, uint256, uint80);

while the Chainlink's interface has the following:

functi on get RoundDat a(ui nt 80 _roundld) external view returns (uint80, int256, uint256, uint256, uint80);

Updates in (Version 2);

The function get RoundDat a() has been revised to follow the Chainlink interface, however the
deci mal s() are of type ui nt 256 instead of ui nt 8.

Updates in (Version 5);

Technically, the function get RoundDat a() does not follow the Chainlink interface, however the
difference in the value ranges is unlikely to become an issue.

Integrators should be aware that not all functions like descri pti on and ver si on are implemented and
get RoundDat a returns the (L1) block number and not the block timestamp.

7.4 Race Conditions When Opening Troves
[Informationalj [Version 1]

CS-HOG-047

In Hedgehog's code, borrow base rates increase with each additional borrow before decaying back to
zero. If two transactions are pending, the first transaction executed will pay a lower fee than the second
transaction.

Similar to Liquity, a user can specify the value _nmaxFeePer cent age to limit the percentage fee they are
willing to pay. However, racing other users is considerably easier in Hedgehog's protocol, as borrowing

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 66

https://chainsecurity.com

fees increase with each borrow, while they depend on redemptions in Liquity. Note that redemptions are
costly to perform under the wrong market conditions.

Furthermore, Hedgehog removed the 5% cap on borrowing fees from the codebase. It is important that
the changes are well documented so that users are aware of setting an acceptable value for
_maxFeePer cent age to limit the fees paid.

7.5 Slightly Larger Collateral Reported

[Informational] [Version 1]

CS-HOG-048

Theoretically, the function HedgehogBase. get Enti reSyst enCol | () can return 1 wei more than the
actual collateral due to Act i vePool . get W5t ETH() returning 1 when the actual collateral is 0.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 67

https://chainsecurity.com

8 Notes

We leverage this section to highlight further findings that are not necessarily issues. The mentioned
topics serve to clarify or support the report, but do not require an immediate modification inside the
project. Instead, they should raise awareness in order to improve the overall understanding.

8.1 Bridged Version of HOG Lacks Permit
(D) (Version 5)

The HogToken in scope of the review is intended to be deployed on Ethereum Mainnet and then bridged
to Base Chain with the native bridge.

As a result of this bridging process, the HogToken on the Base Chain will be deployed via the
Opti mi smM nt abl eERC20Fact ory bridge, making it an ERC20Bri dged token. However, the
ERC20Br i dged does not retain all the features of the original token—most notably, it does not include a
perm t function.

This limitation may affect any operations or integrations that rely on gasless approvals via EIP-2612.

8.2 Dependency on EIP-1559 Specification
(D (Version 5)

The price of BaseFeeLMAToken is computed as the logarithmic moving average of the base fee over the
last 50 Ethereum mainnet blocks.

The Ethereum Base Fee mechanism is specified in EIP-1559.

If the base fee pricing mechanism is modified by a future Ethereum upgrade, it could potentially break
Hedgehog's protocol. We have identified at least two ways in which the protocol could fail:

1.The base fee is expected to change by a maximum of 12.5% per block. If this limit is exceeded, the
maximum deviation threshold of the price feed could get exceeded and the protocol would stop to
accepting new prices.

2.The EIP-1559 implicitly enforces a minimum base fee of 7 wei. If this limit would change in the future
and the base fee drops to a value as low as 1 wei, then any trove with a collateralization ratio below 10
could be rounded down by Li qui t yMat h. _conput eCr () . Below we argue why the current limit is 7
wei:

Note that the base fee decreases when less gas is used than the target gas. So when no gas is used we
have gas_used_delta = parent_gas_target - 0 = parent_gas_target. The increase of the next base fee
can then be shown to be parent_base_fee per_gas // BASE_FEE_MAX_CHANGE_DENOMINATOR (=
8):

base_fee_per_gas_delta = parent_base_fee_per_gas * gas_used_delta // parent_gas_target // BASE_FEE_MAX_CHANGE DENOM NATOR
base_fee_per_gas_delta = parent_base_fee_per_gas * parent_gas_target // parent_gas_target // 8
base_fee_per_gas_delta = parent_base_fee_per_gas // 8

Now, if parent _base_fee_per _gas falls below 8 wei, then base_fee_per _gas_del t a becomes
zero as the expression rounds down to zero. Hence, the limit is 7 wei.

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 68

https://web.archive.org/web/20250228130027/https://docs.base.org/chain/bridge-an-l1-token-to-base#step-1-deploy-your-token-on-base
https://web.archive.org/web/20250212181449/https://eips.ethereum.org/EIPS/eip-1559
https://chainsecurity.com

8.3 Incorrect Permit Functions

(D) (Version 5

The perm t functions of the HOGToken and the BaseFeeLMAToken allow to set an ERC20 approval
based on a signature. They use ecr ecover for the signature check, but do not check whether the result
is zero. Hence, anyone can give ERC20 approvals in the name of the Zero-Address for these tokens.
However, as transfers to and from the Zero-Address are blocked, this should not have an impact.

8.4 Liquidations Can Incur Losses to Stability
Pools

(D (Version 2

The minimum collateralization ration (MCR) in Hedgehog is set to 150% Any trove with a collateralization
ratio (CR) lower than MCR is eligible to be liquidated. The liquidations are expected to happen when a
trove's CR is above 100%, hence the stability pool makes a profit. The stability pool should make a loss
only when a trove is liquidated when its CR is below 100%.

As highlighted in Pegging Mechanisms Are Less Strict, Hedgehog does not enforce a hard upper bound
on the price of the debt token BaseFeeLMA. It is possible that BaseFeeLMA can trade in secondary
markets at 150% (or above) of the oracle price. Therefore, even if liquidations happen when a trove's CR
above 100%, the stability pool might incur losses if the price in the secondary market is high.

8.5 Low Redemption Fees Due to High
Overcollateralization

(D) (Version 2

The redemption fees are determined by the proportion of collateral redeemed relative to the system's
total collateral.

The Hedgehog team anticipates a high overcollateralization ratio between 750% and 1000%. As a result,
redemptions removing large amounts of the debt supply only remove a small fraction of the total
collateral and hence pay a low redemption fee.

Using the formulas for the redeem collateral (baseFeeDebt * price) and the TCR (TotalCollateral /
TotalDebt / price), we can derive the redemption share depending on the baseFeeDebt and the TCR:

RedeemCollateral __ RedeemDebt* price , TotalDebt _ RedeemDebt x 1

TotalCollateral ~— TotalDebt TotalCollateral ~— TotalDebt TCR

RedemptionShare =

For example, with a 1000% overcollateralization ratio and a base rate of 1%, redeeming 10% of the
supply would incur a fee of 2.5%

RedemptionShare = 0.5% + 1% + 10% *11—0 =05%+1%+1%=2.5%

and increase the base rate to 2% for the next redemption.

8.6 Minimum Debt Value of a Trove

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 69

https://chainsecurity.com

In (Version 1), the minimum debt amount for a trove is 50 million baseFeeLMA tokens. The value of the
minimum debt scales linearly with the base fee on mainnet. If we consider 3 values from the typical range
of baseFee on mainnet, the value of min debt changes significantly:

* pbase fee @ 1 Gwei -> min debt value is 0.05 ETH
* pbase fee @ 50 Gwei -> min debt value is 2.5 ETH
* pbase fee @ 100 Gwei -> min debt value is 5 ETH

The historical data from Ethereum mainnet shows that the gas price can spike further than 100 Gwei,
which would cause the minimum debt value to be even larger.

Conversely, if the base fee drops to 1 Gwei, the minimum debt decreases to 0.05 ETH. Therefore, the
griefing attack that inject troves in the linked list to make user transactions such as openTrove() or
redeentCol | at eral () revert, are more likely when base fee is low.

Hedgehog is aware of this behavior and considers it to work according to the system design.

Changes in (Version 4):

The minimum debt amount of a trove has been increased from 50 to 100 million base fee tokens.

8.7 Pegging Mechanisms Are Less Strict

Hedgehog uses similar mechanisms as Liquity to maintain the pegging of BaseFeelLMA to the actual
base fee in Ethereum mainnet. However, important system-wide parameters have been altered, resulting
in less stringent pegging mechanisms. Consequently, BaseFeeLMA can fluctuate in a wider price range:

e Upper bound: The minimum collateralization ratio (MCR) enforces the upper limit of the price
fluctuation for the debt token. If BaseFeelLMA is priced high enough in a secondary market, an
arbitrage opportunity is opened as users can open undercollateralized troves and sell the debt token
in a secondary market to make a profit. Hedgehog sets MCR to 150%, meaning that BaseFeeLNMA
can trade in a secondary market up to 150% of its actual value in mainnet before the pegging
mechanism (arbitrage opportunity) kicks in to limit further price increase. Liquity sets MCR to 110%.

» Lower bound: Redemptions enforce that the price of the debt token does not fall below a certain limit
in the secondary markets. If the price of BaseFeeLMA drops below this limit, redemptions open an
arbitrage opportunity as one can buy BaseFeelLMA tokens from the market and redeem them at their
face value in Hedgehog. A fee is charged on redemption, which influences the lower limit.

Moreover, in Hedgehog, redemptions do not increase the borrowing fee. This is because the borrowing
fees are tied to a borrow base rate and not the (redemption) base rate as in the case of Liquity. When the
BaseFeelLMA token trades below its face value, redemptions occur. Since borrowing fees remain
unaffected, the price experiences further downward pressure due to the issuance of additional tokens.

A full review of the soundness of the financial model was not in scope of this review.

8.8 Returned Price When Both Oracles Are
Untrusted

(D) (Version 5

The function Pri ceFeed. f et chPri ce() checks if the backup oracle is broken or its last two prices
deviate more than allowed (Case 1), and returns the last good price if one of the conditions is satisfied:

I:$: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 70

https://chainsecurity.com

if (
_backupOr acl el sBroken(backupOracl eResponse)
_pri ceChangeAboveMax(
backupOr acl eResponse,
prevBackupOr acl eResponse,

deci mal s
)
) |
_changesSt at us(St at us. bot hOracl esUnt rust ed) ;
return | ast GoodPrice;
}

This behavior is different from Liquity which accepts the Chainlink price if both oracles report a similar
price. Imagine a scenario where the price increases by 12.5% in two subsequent blocks and the backup
is currently used. With the current contract design Block 102 would return the last good price, instead of
the main oracle price:

Ethereum Block 100:
1. Base feeis 1
2. Main oracle price is broken
3. Backup oracle price is 1
4. priceis 1
Ethereum Block 101:
1. Base feeis 1.1
2. Main oracle price is broken
3. Backup oracle not updated
4. priceis 1
Ethereum Block 102:
1. Base feeis 1.2
2. Main oracle report 1.2
3. Backup oracle report 1.2
4. priceis 1
Ethereum Block 103:
1. Base feeis 1.2
2. Main oracle report 1.2
3. Backup oracle report 1.2

4, priceis 1.2

Similarly, if the backup oracle is used when the main oracle is broken (Case 2), and the main oracle has
not recovered, then Pri ceFeed. f et chPri ce() will check if the backup oracle response is more than
the allowed deviation away from the previous oracle response. If the deviation is greater than the allowed
deviation, the function will return the last good price otherwise it accepts the backup price. In Liquity's
code the backup price would be accepted even when the backup oracle response is more than the
allowed deviation away from the last good price.

(S: Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 71

https://chainsecurity.com

8.9 State Variable totalHOGIssued Might Deviate
From Actual HOG Issued
(D) (Version 1

The state variable Conmmuni t yl ssuance. t ot al HOQd ssued is public and can be queried externally to
get the amount of HOG tokens that have already been issued. However, callers should be aware that this
value can be updated by privileged accounts and might not reflect the actual amount of issued HOG
tokens:

function set Tot al Hogl ssued(
uint _newHogl ssued
) external onlyRol e(DI STRI BUTI ON_SETTER) {
t ot al HOQ ssued _newHogl ssued;
emt Total Hogl ssuedManual | yUpdat ed(_newHogl ssued) ;

8.10 Tokens Can Get Stuck When the Issuance Is
Reduced

An address with DI STRI BUTI ON_SETTER role can change the overall token issuance with functions
set HOGSuppl yCap(), setl SSUANCE FACTOR(), or setTotal Hogl ssued(). The privileged
addresses that can call these functions are responsible to ensure that the changes are atomic, and the
new issuance curve is correct, hence any change of these parameters should be evaluated carefully.

Note that there is no mechanism to withdraw tokens from the contract, so if the deployer initially transfers
1 million tokens to the contract and subsequently decides to reduce the total issuance, a portion of the
tokens may become irretrievably stuck.

8.11 Trove Changes Are Forbidden in Specific
Scenarios

Trove modifications, such as removing collateral or closure, are forbidden in case the total
collateralization of the system goes below the critical collateralization ration (200%) afterwards.
Therefore, it is possible that a borrower cannot close its trove or withdraw collateral in specific scenarios.

@ Hedgehog - Hedgehog Protocol - ChainSecurity - © Decentralized Security AG 72

https://chainsecurity.com

	1 Executive Summary
	1.1 Overview of the Findings

	2 Assessment Overview
	2.1 Scope
	2.1.1 Excluded from scope

	2.2 System Overview
	2.2.1 Hedgehog customizations
	2.2.2 Trust Model and Roles
	2.2.3 Changes in Version 2:
	2.2.4 Changes in Version 3:
	2.2.5 Changes in Version 4:
	2.2.6 Changes in Version 5:
	2.2.7 Changes in Version 6:
	2.2.8 Changes in Version 7:

	3 Limitations and use of report
	4 Terminology
	5 Open Findings
	5.1 Dependency on Current Block Time
	5.2 Reducing Fees by Splitting Transactions
	5.3 Missing Configurations in FeesRouter Compromise Accounting
	5.4 Slow Expansion of the BaseFeeLMAToken Supply Due to High Costs
	5.5 Incorrect Rate Adjustment
	5.6 Gas Inefficiency in BaseFeeOracle
	5.7 Attacker With Sufficient Funds Can Lower Redemption Fees
	5.8 Redemptions Without Base Rate Increase
	5.9 Incorrect Code Comments
	5.10 Known Issues From Liquity Are Present in Hedgehog
	5.11 Lack of Documentation

	6 Resolved Findings
	6.1 Collateral Surplus Is Stuck in the Contract
	6.2 Incorrect Price Used for Collateralization Ratio
	6.3 Redeemed Amount Does Not Account for Decimals
	6.4 Wrong Conversion Formula Used in _getCappedOffsetVals
	6.5 Wrong Decimals Returned by _computeCR
	6.6 Liquidations Are Blocked From Withdrawal Limit
	6.7 Withdrawal Limit Does Not Track Collateral
	6.8 Incompatible Interface With BaseFeeOracleArb
	6.9 Gas Compensation Is Ignored in Trove Redemption
	6.10 Gas Compensation Is Not Accounted for Correctly When Closing a Trove
	6.11 Price Feed Returns Wrong Price
	6.12 Price Feed Stores and Returns Wrong Decimals
	6.13 Redemption Fees Can Be Lowered to Floor Value
	6.14 Redemption Rate Double Counts the Redemption Share
	6.15 Withdrawing wstETH Gains to Trove Reverts
	6.16 Wrong Conversion Rate Used in HintHelpers
	6.17 Adversary Can Keep Withdrawal Limit Tiny
	6.18 Incorrect CommunityIssuance Configuration Can Break the StabilityPool
	6.19 Closing a Trove Does Not Update the Withdrawal Limit
	6.20 Double Counting of Full Redemptions in Withdrawal Limit Calculation
	6.21 Limit Can Exceed Active Collateral
	6.22 Liquidations Update Withdrawal Limit in an Inconsistent Way
	6.23 Withdrawal Limit Reset on Collateral Deposits
	6.24 Incorrect Timeout Value in PriceFeedArb
	6.25 Liquidation Price Has Wrong Decimals
	6.26 Locking of Troves Is Longer Than Specified
	6.27 Change of Issuance Curve Has Unexpected Side Effects
	6.28 Chosen Values for Gas Compensation and Minimum Debt Are Low
	6.29 Closing Troves Requires Borrowers Having Larger Balance Than Needed
	6.30 Distribution Functions in FeesRouter Use Wrong Configs
	6.31 Function _getUSDValue Computes Wrong Value
	6.32 Gas Compensation Not Accounted on Redemption Hints
	6.33 Inconsistent Definition of Redemption Share
	6.34 Mismatch of NICR Specifications With Implementation
	6.35 Price Feed Compares Timestamp to Blocknumber
	6.36 PriceFeed Does Not Check if Main Oracle Recovers
	6.37 Redemption Share Is Rounded to Zero
	6.38 Unusual Decimals Used for Values in StabilityPool
	6.39 Wrong Value Used to Calculate the Borrowing Rate With Decay
	6.40 Collateralization Ratio Is Rounded Down
	6.41 Adversary Can Slow the Recovery of Withdrawal Limit
	6.42 Outdated Specification for _handleWithdrawalLimit
	6.43 Precision Issue in Withdrawal Limit Calculation
	6.44 Unclear Specification Regarding Oracle Decimals
	6.45 Withdrawal Limit Function Has Discontinuities
	6.46 Magic Value for Expand Duration
	6.47 Missing Event When Changing Withdrawal Limit
	6.48 Withdrawal Threshold Can Be Circumvented by Splitting Transactions
	6.49 Unnecessary Limitation When Opening a Trove
	6.50 Event BorrowBaseRateUpdated Is Emitted Twice
	6.51 Excess Fee Distribution in FeesRouter
	6.52 Function _findPriceBelowMCR Can Be Improved
	6.53 Immutable Parameters Should Be Constants
	6.54 Incomplete Error Message
	6.55 Incorrect Validation of Repayments
	6.56 Initial Stake Rounds Down to Zero
	6.57 Missing Event When Increasing Balance
	6.58 Missing Sanity Checks
	6.59 Misleading Variable Name in BorrowerOperationsArb
	6.60 Misleading Variable Name in LiquityMath
	6.61 Withdrawal Limit Does Not Take Collateral From Redistributions Into Account
	6.62 Remaining ToDos
	6.63 Gas Optimizations
	6.64 Incorrect Interfaces
	6.65 Misleading Variable Name in BaseFeeOracle
	6.66 Misleading Variable Name in FeesRouter
	6.67 Misleading Variable Name in TroveManager
	6.68 Vulnerable Dependency

	7 Informational
	7.1 Incorrect Comments About Subsequent Base Fee LMA Prices
	7.2 Incorrect Error Message in Recovery Mode
	7.3 Base Fee Oracle Is Incompatible With Chainlink Interface
	7.4 Race Conditions When Opening Troves
	7.5 Slightly Larger Collateral Reported

	8 Notes
	8.1 Bridged Version of HOG Lacks Permit
	8.2 Dependency on EIP-1559 Specification
	8.3 Incorrect Permit Functions
	8.4 Liquidations Can Incur Losses to Stability Pools
	8.5 Low Redemption Fees Due to High Overcollateralization
	8.6 Minimum Debt Value of a Trove
	8.7 Pegging Mechanisms Are Less Strict
	8.8 Returned Price When Both Oracles Are Untrusted
	8.9 State Variable totalHOGIssued Might Deviate From Actual HOG Issued
	8.10 Tokens Can Get Stuck When the Issuance Is Reduced
	8.11 Trove Changes Are Forbidden in Specific Scenarios

